LoCo Lab EDGES Memo 165 Fisher Matrix Analysis of Physical Foreground Model for EDGES

Raul Monsalve McGill University raul.monsalve@mcgill.ca

January 28, 2020

1 Description

Here we conduct a Fisher Matrix analysis to estimate the statistical uncertainties in the parameters of the astrophysical foreground $(T_0, \beta, \gamma, ...)$ when fitted along with ionospheric opacity (τ_{ion}) and electron temperature (T_e) .

The i, j element of the Fisher matrix is given by:

$$F_{ij} = \sum_{n=1}^{N} \frac{1}{[\sigma(\nu_n)]^2} \left[\frac{\partial T}{\partial p_i}(\nu_n) \right] \left[\frac{\partial T}{\partial p_j}(\nu_n) \right],\tag{1}$$

where ν is frequency, T is the model for the brightness temperature spectrum, σ is the standard deviation of the channel noise, N is the number of channels in the spectrum, and p_i is the *i*th parameter.

To apply a Gaussian prior with standard deviation σ_i^p to the *i*th parameter, the value of F_{ii} has to be increased by adding $1/(\sigma_i^p)^2$.

The covariance matrix of the parameters is computed as:

$$C = F^{-1}. (2)$$

2 Models

In this memo we compute the parameter uncertainties for the following models:

• Model A (Parameters: T_0, β, γ)

$$T(\nu) = T_{\rm CMB} + T_0 \left(\frac{\nu}{\nu_0}\right)^{\beta + \gamma \log(\frac{\nu}{\nu_0})}$$
(3)

• Model B (Parameters: $T_0, \beta, \gamma, \tau_{ion}, T_e$)

$$T(\nu) = T_{\rm CMB} + T_0 \left(\frac{\nu}{\nu_0}\right)^{\beta + \gamma \log(\frac{\nu}{\nu_0})} e^{-\tau_{ion} \left(\frac{\nu}{\nu_0}\right)^{-2}} + T_e \left[1 - e^{-\tau_{ion} \left(\frac{\nu}{\nu_0}\right)^{-2}}\right]$$
(4)

• Model C (Parameters: T_0 , β , γ , τ_{ion} , T_e , δ)

$$T(\nu) = T_{\rm CMB} + T_0 \left(\frac{\nu}{\nu_0}\right)^{\beta + \gamma \log(\frac{\nu}{\nu_0}) + \delta \left[\log(\frac{\nu}{\nu_0})\right]^2} e^{-\tau_{ion} \left(\frac{\nu}{\nu_0}\right)^{-2}} + T_e \left[1 - e^{-\tau_{ion} \left(\frac{\nu}{\nu_0}\right)^{-2}}\right]$$
(5)

We use a frequency range 60 - 120 MHz, a channel width of 0.4 MHz, and a reference frequency $\nu_0 = 90$ MHz.

3 Nominal Parameter Values

- $T_0 = 1000 \text{ K}$
- $\beta = -2.6$
- $\gamma = 0.1$
- $T_e = 800 \text{ K}$
- $\tau_{ion} = 0.005$
- $\delta = -0.2$

4 Noise

We use the following model for the noise standard deviation (Gaussian distribution for each channel, no channel-to-channel correlation):

$$\sigma(\nu) = \sigma_0 \left(\frac{\nu}{\nu_0}\right)^{\beta}.$$
 (6)

We use two noise levels at $\nu_0 = 90$ MHz:

- $\sigma_0 = 200 \text{ mK}$ (to mimick a short integration)
- $\sigma_0 = 20 \text{ mK}$ (to mimick a long integration)

5 Priors

In the cases where we use (Gaussian) priors, we use the following priors simultaneously:

- $T_0: \sigma^p = 500 \text{ K}$
- $T_e: \sigma^p = 400 \text{ K}$

We do not use priors for any of the other parameters.

6 Cases

CASE	Model	Noise	Priors
1	А	200 mK	NO
2	А	20 mK	NO
3	В	200 mK	NO
4	В	200 mK	YES
5	В	20 mK	NO
6	В	20 mK	YES
7	С	200 mK	NO
8	\mathbf{C}	$200~{\rm mK}$	YES
9	\mathbf{C}	20 mK	NO
10	\mathbf{C}	20 mK	YES

7 Results

The results are presented in Figures 1 through 10.

8 Discussion

- 1. In Fisher Matrix analyses, it is assumed that the models describe the data perfectly. The uncertainties reported are only statistical.
- 2. Because of the linearization involved, the uncertainty ellipses are only correct to first order. The true uncertainty distributions in general are not perfectly elliptical.
- 3. In the figures of this memo we see that for Model A, the parameter uncertainties are very small compared to the cases with more parameters.
- 4. In Model B, fitting simultaneously the reference astrophysical sky temperature (T_0) and the ionospheric electron temperature (T_e) without priors is not practically possible due to their strong covariance. However, using very conservative priors on these two parameters reduces the uncertainty in T_0 to within a few Kelvin. Although the uncertainty in T_e remains large, it is also reduced. The uncertainty in β , γ , and τ_{ion} is also significantly reduced when priors are used.
- 5. In Model C (with 6 free parameters) and with 200-mK noise at 90 MHz, the uncertainties are large even with priors. In the case of 20-mK noise (and priors) the uncertainties become reasonably low.

Figure 1: CASE 1. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 2: CASE 2. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 3: CASE 3. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 4: CASE 4. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 5: CASE 5. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 6: CASE 6. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 7: CASE 7. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 8: CASE 8. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 9: CASE 9. Black dots are the input values. Ellipses correspond to 68% confidence region.

Figure 10: CASE 10. Black dots are the input values. Ellipses correspond to 68% confidence region.