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Cosmic Dawn (CD), when the first stars and proto-galaxies began to form, is commonly expected
to be accompanied by an absorption signature at radio frequencies. This feature arises as Lyman-
U photons emitted by these first luminous objects couple the 21 cm excitation temperature
of intergalactic hydrogen gas to its kinetic temperature, driving it into absorption relative to
the CMB. In fiducial models of CD, significant spatial fuctuations in the 21 cm brightness
temperature at CD, sourced from inhomogeneities in the density and Lyman-U fields, are
limited to sub-degree angular scales; on larger scales, the sky-averaged 21 cm signal is well
approximated as isotropic. The directivity pattern on the EDGES-low antenna has significant
weight on angular scales of 10s of degrees. Correspondingly, an observable consequence of
the isotropy of the signal on these scales is that one should expect the CD absorption trough
to be independent of the Galactic Hour Angle (GHA) in the EDGES-low data. In contrast,
both GHA-independent and GHA-dependent multiplicative systematic effects, arising due to
imperfect calibration or instrumental modelling coupled to anisotropic foreground emission, are
possible. As such, GHA-independence of estimates of the CD absorption trough provides a
useful cross-check against contamination by unmodelled GHA-dependent systematic effects. In
this memo, I examine the Galactic hour angle dependence of EDGES low-band data in relation
to this cross-check.

1 Data
The data sets analysed in this memo derive from observations with EDGES low between
2016 day 252 and 2017 day 94. Two versions of the data, derived from independent data-
processing pipelines (including calibration, RFI excision and GHA and frequency averaging),
are considered:

• Data processed by A. Rogers - (i) ‘spegha’ tables of EDGES-low data (temperature
spectra), with flags, as a function of UTC time. One table per 4 hour GHA block, for
blocks centered on GHA = 0, 4, 8, 12, 16 and 20 hours. (ii) ‘4hour_bin’ tables of ‘spegha’
data averaged over GHA. (iii) ‘spegha4hrtable’ table of estimated 21 cm absorption trough
amplitude, SNR and sky temperature at 78 MHz as a function of GHA bin. Hereafter, I
refer to these as the p1 data sets.

• Data processed by R. Monsalve - tables of EDGES-low data binned in GHA blocks of 4
and 6 hours, centered on GHA = 0, 4, 8, 12, 16 and 20 hours and 0, 6, 12 and 18 hours,
respectively, and their respective weights. Hereafter, I refer to these as the p2 data sets.

Here, I restrict my attention to the three 4-hour GHA block data sets centered on GHA = 8, 12
and 16 hours, matching the GHA range of the data used in the primary analysis in B18. The
GHA-average of the data in these blocks approximately matches that used to derive the quantities
estimated in Extended Data Table 2 of Bowman et al. (2018) (hereafter, B18 EDT2).
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2 Methodology
To provide some intuition for the impact of large scale isotropy of the 21 cm signal on recovered
parameter estimates as a function of GHA, I start by constructing and analysing mock-data sets
with a priori known foreground, 21 cm signal and noise components. The approach used to
construct these data sets is described in Section 2.1. The models used to fit both the mock-data
sets and the data are described in Section 2.2.

2.1 Data model & mock-data sets
I produce a mock-data set for each of the three 4-hour GHA block data sets centered on GHA =
8, 12 and 16 hours, each described by a data model of the form,

Tant(GHA) = T21 + TFg (GHA) + n(GHA) . (1)

Here, T21 is a vectorised 21 cm absorption trough spectrum parametrised as a flattened Gaussian
of the form,
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and �, a0, F and g = 7 describe the amplitude and central frequency, width and flattening of the
absorption trough, respectively. TFg (GHA) is a vectorised model for the foreground component
of the data parametrised as a ‘lin-log’ polynomial of the form,
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which is proportional to the foreground model used for calculating the values quoted in B18
EDT2. n(GHA) is a vectorised model for the noise on the data, which, here, I approximate as
Gaussian and white, mirroring the noise model used in B18 EDT2.

When constructing the mock data sets, I assume a 21 cm signal that is fixed between data
sets, in the manner expected for a signal that is isotropic on the scales measured by EDGES.
In each GHA data set, the signal is described by Equation 2 with parameters: � = 0.53 K,
a0 = 78.1 MHz, F = 18.7 MHz and g = 7, selected to match the 21 cm signal parameters
inferred in B18. I construct the foreground model according to Equation 4, with = = 6 and
with foreground coefficients, 0̂8, given by the elements of the vector of maximum likelihood
coefficients, â(GHA) = (Q)N−1Q)−1Q)N−1d(GHA), of the fit of Equation 4 to the data as a
function of GHA. Here, Q is the design matrix of lin-log polynomials in Equation 4 and N is
the covariance matrix of n(GHA). Finally, for simplicity, I assume a fixed RMS noise level of
∼ 45 mK in each of the GHA data sets. In practice, there is an ∼ 20% increase in the foreground
brightness temperature averaged over 4 h GHA blocks between the GHA block centered on
8 and 16 hours; however, since the expected signal is an order of magnitude larger than the
assumed noise, with or without this correction, the impact of this assumption will be small1.

1The impact of deviations from this assumption of uniformity of the noise in the GHA-averaged EDGES-low
data has been shown to be of greater significance ( Sims & Pober 2020); however, for direct comparison with B18
EDT2, here, I restrict consideration to models with uniform noise.
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.
Parameter Distribution Prior
� uniform * (0, 4) K
a0 uniform * (60, 90) MHz
F uniform * (5, 40) MHz
g uniform * (0, 40)

Table 1: Default priors on flattened Gaussian 21 cm signal model.

2.2 Generalised GHA-dependence cross-check
Under the assumption that Equation 1 accurately describes the EDGES-low data, one should
expect to recover consistent estimates of the CD absorption trough as a function of GHA.
In contrast, inconsistency between 21 cm signal estimates as a function of GHA implies the
presence of a GHA-dependent bias in the signal estimates, resulting from structure in the data
that is not modelled by )fg (GHA, a).

In Section 3.1, I validate this assertion using fits to the mock data described in Section 2.1,
before examining the GHA-dependence of the EDGES-low data in Section 3.3. In both cases, I
assume that the probability of the data given Equation 1 is described by a Gaussian likelihood
function of the form,

L(�) ∝ 1√
det(N)

exp

[
−1
2
(d − Tant)† N−1 (d − Tant)

]
, (5)

where Tant is the model for the signal and I model the noise on the spectrum as an uncorrelated
Gaussian random field, with covariance matrix N. The elements of the covariance matrix are
given by N8 9 =

〈
=8=
∗
9

〉
= X8 9f

2
9
, where 〈...〉 represents the expectation value and f9 = 45 mK

denotes the noise expectation in element 9 of the spectrum. The priors that I place on the
parameters of the flattened Gaussian 21 cm signal model when fitting the data are as listed in
Table 1. These prior distributions are the used for all fits including the flattened Gaussian 21 cm
signal model except where otherwise stated in the text.

3 Results

3.1 Parameter recovery from mock-data sets
In Section 3.1.1, I examine the effect of adding unnecessary complexity to a foreground model
that is already sufficiently complex to describe the data. In Section 3.1.2, I examine the prior
dependence of recovered 21 cm parameter estimates when they are correlated in the manner
seen in the EDGES low-band parameter estimates in B18 Extended Data Figure 10.

3.1.1 Foreground model complexity

When fitting Equation 5, I consider both = = 6 and = = 7 variants of Equation 4 for the purposes
of constraining the 21-cm signal. This enables validation of the expectation that, for a sky
temperature that is accurately described by Equation 1 with an = = 6 foreground, if the Qn basis
for a more complex foreground model includes Q6, one should expect to recover 21 cm signal
estimates consistent with those obtained with Q6, within their respective uncertainties.

The posterior probability distributions of the parameters of the flattened Gaussian 21 cm
signal model and a 6 term lin-log foreground model, jointly estimated from the 6 ≥ GHA > 10
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(grey), 10 ≥ GHA > 14 (red), 14 ≥ GHA > 18 (blue) EDGES low band data sets, are
shown in Figure 1 and Figure 2, respectively. The posterior probability distributions of the
parameters of the corresponding fit of the 21 cm signal and a 7 term lin-log foreground model
are shown in Figure 3 and Figure 4, respectively. The recovered parameters are consistent with
one another, as a function of GHA, and with the input 21 cm signal parameters in the mock data
set. Furthermore, the highest order term in the = = 7 data set is consistent with zero and simply
increases the correlation between, and uncertainties on, the 21 cm signal parameters.

The unnecessary increase in complexity of the foreground model between = = 6 and = = 7
is also evident if one compares the Bayesian evidence of the models,

Z =

∫
L(Θ)c(Θ)d=Θ , (6)

where c(Θ) are the priors on the model parameters Θ. For uniform priors on the parameters of
the model over the ranges illustrated in Figure 1 and Figure 2, and assuming that the = = 6 and
= = 7 foreground models are a priori equally likely, the log-Bayes factor between the models is
ln(�6,7) = ln(Z6) − ln(Z7) = 9.6, corresponding to decisive evidence in favour of the model
including the = = 6, rather than the = = 7, foreground model as a description of the mock data
set (e.g. Kass & Raftery 1995).

Figure 1: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 term lin-log foreground model (Equation 4), from
three EDGES low band mock-data sets with Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red), 14 ≥ GHA > 18 (blue).
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Figure 2: Posterior probability distributions of the parameters of a 6 term lin-log foreground
model (Equation 4), when jointly estimated with a flattened Gaussian 21 cm signal model, from
three EDGES low band mock-data sets with Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red), 14 ≥ GHA > 18 (blue).
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Figure 3: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 term lin-log foreground model (Equation 4), from
three EDGES low band mock-data sets with Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red), 14 ≥ GHA > 18 (blue).
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Figure 4: Posterior probability distributions of the parameters of a 6 term lin-log foreground
model (Equation 4), when jointly estimated with a flattened Gaussian 21 cm signal model, from
three EDGES low band mock-data sets with Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red), 14 ≥ GHA > 18 (blue).
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3.1.2 Prior-dependence of 21 cm parameters

As seen in Figures 1 and 3, when fitting the mock data sets, the amplitude and flattening of a
flattened Gaussian model for the 21 cm signal are degenerate. This degeneracy implies that the
recovered estimates of � and g will be sensitive to their respective priors. This is illustrated in
Figure 5 where the posteriors for the 21 cm signal estimates are plotted for particular choices
of restrictive priors on g: 0 < g < 4.5 in grey, 4.5 < g < 12 in red2, 20 < g < 40 in blue. A
degeneracy of this sort requires a careful choice of priors on the degenerate parameters. Ideally,
this choice would be motivated by the physics of the problem, but in the absence of theoretical
priors, broad uninformative priors that avoid artificially restricting the recovered estimates of �
through a restrictive choice of prior on g, and vice versa, are a conservative choice.

Figure 5: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 term lin-log foreground model (Equation 4), from
a single EDGES low band mock-data set, for three choices of uniform priors on g: 0 < g < 4.5
(grey), 4.5 < g < 12 (red), 20 < g < 40 (blue). The degeneracy between � and g, seen in e.g.
Figure 1, means the posterior for � is a function of the prior on g (and vice versa).

2The intermediate prior in g, in red, has been selected to match the range considered in EDGES MIT-series
memo 272: https://www.haystack.mit.edu/wp-content/uploads/2020/07/memo_EDGES_272.pdf
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3.2 Signal-recovery null-test
3.2.1 Foreground-only mock-data set

In this section I start by repeating the analysis described in Section 3.1.1, but now using mock-
data sets consisting of only foreground components. I then fit each mock-data set using: (i) a
model consisting exclusively of a lin-log foreground model (Equation 4), with either = = 6 or
= = 7 or (ii) a consisting of one of the foregroundmodels described in i) plus a flattened Gaussian
21 cm signal model (Equation 2).

Comparing the Bayesian evidence of the models when fit to the foreground-only mock-data
set, I find the log-Bayes factor of 3.8 and 4.4, respectively, between the model including an
= = 6 or = = 7 lin-log foreground model, versus one including both an with = = 6 or = = 7
lin-log foreground and flattened Gaussian 21 cm signal model. In both case, this corresponds to
strong evidence in favour of the foreground-only model (i.e. no detection of the 21 cm signal)
as expected.

3.2.2 Foreground plus B18 21 cm signal mock-data set

Next, I repeat the test described in Section 3.2.1 on the mock-data sets analysed in Section 3.1.1,
which include the absorption trough recovered in B18. In this case the Bayesian evidence
decisively favours the models including the flattened Gaussian 21 cm signal over those without
it, with a log-Bayes factor of greater than 10 in each case.

3.2.3 GHA = 8, 12 and 16 hour AR EDGES low band data sets

Repeating the test described in Section 3.2.2 but now on each of the GHA = 8, 12 and 16 hour
AR EDGES low band data sets, I again find that the Bayesian evidence decisively favours the
models including the flattened Gaussian 21 cm signal over those including only a foreground
model, with a log-Bayes factor of greater than 10 in each case.

3.3 EDGES-low GHA parameter dependence
3.3.1 21 cm signal amplitude estimates when fixing the shape of the signal and fitting to

a sub-band of the data

In this Section, I analyse GHAbinned EDGES low data similar (up to pre-processing differences;
see Section 3.3.4) to that which was analysed and reported on in a test of foreground-temperature
independence of the recovered 21 cm absorption trough in B18 EDT2. In B18, this test is carried
out by fitting for the maximum likelihood amplitude of a flattened Gaussian absorption trough,
whose shape parameters are fixed to match the shape of the 21 cm signal recovered from the
GHA-averaged data, jointly with a 6 term lin-log model for the foregrounds (Equation 4), over a
65 < a < 95 MHz sub-band of the EDGES low data. In Table 2, I list the maximum likelihood
values for the 21 cm absorption trough, in 4-hour GHA bins centered on 8, 12 and 16 hours,
reported (i) in B18 EDT2 and (ii) from analysis of the data set under consideration in this memo.
Table 2 also includes 1-sigma uncertainties associated with the posterior probability distribution
for the amplitude of the 21 cm signal derived via an analogous analysis to that described in
Section 3.1, but with the additional restrictions described above on the shape of the 21 cm signal
and frequency range analysed. The mean of the posteriors for the parameters are consistent with
the estimates in B18 EDT2 to within their 1-sigma uncertainties in of the p1 data sets and in all
but the 16 h GHA p2 data set, which is consistent at 2-sigma. The amplitudes recovered from
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the p1 data sets are also systematically higher than the p2 data sets (at the ∼ 1-sigma level in
the GHA=8 and 12 h data sets and at ∼ 3-sigma in the GHA=16 h data set), perhaps due to
differences in processing of the raw data.

.
Sub-band estimates

p1 data sets p2 data sets
Parameter GHA EDT2 (K) Recovered 1-sigma Recovered 1-sigma

mean (K) uncertainty (K) mean (K) uncertainty (K)
� 08 0.44 0.49 0.08 0.37 0.08

12 0.57 0.59 0.08 0.49 0.08
16 0.59 0.67 0.08 0.44 0.08

Table 2: Mean and 1-sigma uncertainties on the amplitude of a flattened Gaussian 21 cm signal
model with fixed central frequency, width and flattening factor (a0 = 78.1 MHz, F = 18.7 MHz,
g = 7), when jointly estimated with a 6 term lin-log foreground model (Equation 4), from
the GHA = 8, 12 and 16 hour EDGES low band data sets, over the restricted frequency range
65 < a < 95 MHz.

3.3.2 GHA dependence of the amplitude and shape of the 21 cm signal fitting across the
full EDGES-low band

As discussed in the introduction to this memo, a predicted consequence of the isotropy of the
21 cm signal on large spatial scales is that one should expect the CD absorption trough to
be independent of GHA in EDGES-low data. In contrast, both GHA-independent and GHA-
dependent multiplicative systematic effects, arising due to imperfect calibration or instrumental
modelling coupled to anisotropic foreground emission, are possible.

In this section, I build on and generalise the GHA dependence of the amplitude of the 21
cm signal test described in Section 3.3.1, in order to assess the level of consistency in recovered
estimates of the shape and amplitude of the 21 cm signal as a function of GHA. For the p1 data
sets, this is done over the 65 < a < 95 MHz sub-band, in which the processed data has non-zero
weight. For the p2 data sets, this is done both over the 65 < a < 95 MHz sub-band, for direct
comparison with the p1 data sets and over the full 50 < a < 100 MHz EDGES-low spectral
band in which it has non-zero weight (the same band used to derive the 21 cm signal parameters
in the analysis of GHA-averaged data in B18).

Figures 6 and 7 show the posterior probability distributions for the flattened Gaussian 21 cm
signal parameters when jointly fitting the data with an = = 6 and = = 7 lin-log foreground model,
respectively. In both figures, the posteriors derived from the p1 and p2 data sets are shown in
the top and bottom subplots, respectively. In all cases, the significant correlation between the
foreground and 21 cm signal model when fitting to data restricted to the 65 < a < 95 MHz
sub-band, results in complex multi-modal posterior probability distributions. Differences are
also apparent in the posteriors recovered from the p1 and p2 data sets. The corresponding
posteriors for the foreground models parameters are shown in Figures 20 – 23 in Appendix C.

The complexity of the posteriors and differences between the constraints derived from the p1
and p2 data sets make assessing GHA-independence of the signal when fitting to data restricted
to the 65 < a < 95 MHz sub-band challenging. Additional data has the potential to break the
degeneracy between models3; thus, next, I turn to analysis of the full-band p2 data sets.

3Also, see Appendix B for an overview of the impact of having greater a priori knowledge of the signal, relevant
if, for example, such constraints were available from external data sets.
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Figure 8 shows the posterior probability distributions for the flattened Gaussian 21 cm signal
parameters when jointly fitting the p2 data sets with an = = 6 (top) and = = 7 (bottom) lin-log
foreground model, respectively, over the full 50 < a < 100 MHz EDGES low spectral band.
The corresponding posteriors for the parameters of the = = 6 and = = 7 lin-log foreground
models are shown in Figures 24 and 25, respectively.

For a uniform prior* (0, 40) on the flattening factor, g, of the flattened Gaussian 21 cm, used
up to now in this memo, the posterior probability distribution for the flattening factor, g, of the
flattened Gaussian 21 cm signal is prior limited when analysing this data set (see Appendix A).
Thus, when fitting the full 50 < a < 100 MHz EDGES low spectral band, I broaden the uniform
prior on g to* (0, 1000).

Comparing the Bayesian evidence for the two models incorporating = = 6 and = = 7 lin-log
foreground components, yields a log-Bayes factors greater than 5 between models for all of
the GHA data sets analysed. This corresponds to strong evidence in preference of the model
incorporating the = = 6, over = = 7, lin-log foreground components. This is also reflected in
the strong consistency between the 21 cm signal posteriors that are recovered between joint fits
with the = = 6 or = = 7 lin-log foreground models in Figure 8, which indicates that the added
complexity of the = = 7 lin-log foreground model is redundant when fitting these data sets.

Comparing Figure 8 to Figures 6 and 7 it is evident that the additional data available when
fitting to the full EDGES low band plays an important role in reducing degeneracy between
regions of the parameter space of the models being fit, with uni-modal posterior solutions
recovered when fitting over the full spectral band. Relatively consistent posteriors are recovered
for the GHA=08 and 12 hours data sets; however, the solutions are inconsistent with those
recovered at GHA=16 hours where a deeper feature at a lower frequency is preferred. The
recovered estimates in each of the data sets are not in agreement with the estimates recovered
from the GHA-averaged data in B18. This inconsistency may be due to updates to the pre-
processing (e.g. calibration, RFI excision, LST and frequency averaging) of the data, relative
to that used for the data analysed in B18. The specifics of this updated pre-processing and its
impact on the recovered signal requires additional consideration but is not discussed further
here.

The mean 21 cm signal parameter and their 1-sigma uncertainties corresponding to the
posteriors in Figure 8 are listed in Table 3 for the analysis using the = = 6 lin-log foreground
model. The parameters with the = = 7 lin-log foreground model aren’t listed but are consistent
with the values quoted for the = = 6 lin-log foreground model. In the GHA=8 and 12 hour
data sets, the amplitude of the recovered signals exceed, by 2 and 3-sigma, respectively, the
standard cosmological expectations for the absorption depth, which predicts a maximum depth4
of ∼ 200 mK. Additionally, the signal is highly flattened, with flattening factors more than
an order of magnitude larger than found in B18 being preferred. This may be suggestive of
sharp residual systematic structure, such as RFI, in the GHA-dependent data that may have been
excised in the GHA averaged data set analysed in B18.

In the GHA=16 hour data set, the amplitude of the recovered signals exceed, the standard
cosmological expectations for the absorption depth by ∼ 10-sigma. The signal is smooth and
narrow, with a flattening parameter of 1.9 ± 0.8 MHz and width of 5.7 ± 0.3 MHz.

Figures 9 and 10 shows the maximum a posteriori (MAP) flattened Gaussian signal com-
ponents (3 − <=) residuals, with <= = )Fg,n + )21 and )Fg,n + )21 a n-term linlog polynomial
foreground model with = = 6 (left) and = = 7 (right), in fits to GHA = 8, 12 and 16 hour

4This model assumes adiabatic cooling of the hydrogen kinetic temperature between I ≈ 150 and CD, no
reheating of the gas prior to the Wouthuysen–Field coupling of the spin and kinetic temperatures of the gas and a
background radiation temperature dominated by the CMB at CD (e.g. Barkana 2018).
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.
Full band estimates

6 term lin-log
Parameter GHA Recovered 1-sigma

mean (K) uncertainty (K)
� 08 0.31 0.05

12 0.31 0.04
16 0.51 0.03

a0 08 65.2 0.2
12 65.7 0.2
16 60.0 0.2

F 08 17.3 0.3
12 19.4 0.4
16 5.7 0.3

g 08 165 197
12 278 254
16 1.9 0.8

Table 3: Mean and 1-sigma uncertainties on the parameters of a flattened Gaussian 21 cm
signal model (Equation 2), when jointly estimated with either a 6 term lin-log foreground model
(Equation 4), from the GHA = 8, 12 and 16 hour p2 EDGES low band data sets.

.
GHA RMS(3 − <6) RMS(3 − <7)

[mK] [mK]
08 44.6 43.3
12 48.3 48.3
16 68.8 68.8

Table 4: RMS residuals of maximum a posteriori joint fits, to GHA = 8, 12 and 16 hour AR
EDGES low band data sets, of a flattened Gaussian absorption trough and a 6 or 7 term linlog
polynomial foreground model: RMS(3 − <=), with <= = )Fg,n + )21 and = = 6 and = = 7,
respectively.

p2 EDGES low band data sets. The RMS of the residuals of the fits are listed in Table 4.
Structure inconsistent with noise is evident at the low end of the band (in the spectral range
50 < a . 55MHz) in all of the data sets analysedwith both of the foregroundmodels considered.
This structure is not evident in fits to the publicly available EDGES low-band data, suggesting
differences in processing of the raw data as a possible cause.
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Figure 6: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 term lin-log foreground model (Equation 4),
from EDGES low band data sets derived from the raw data using the p1 and p2 (see Section 1)
processing pipelines (top and bottom, respectively). In each case, the three data sets analysed
have Galactic hour angle ranges: 6 ≥ GHA > 10 (grey), 10 ≥ GHA > 14 (red) and 14 ≥
GHA > 18 (blue) and are fit over the restricted frequency range 65 < a < 95 MHz.
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Figure 7: As in Figure 6 but for a 7 term lin-log foreground model.
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Figure 8: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 (top) or 7 (bottom) term lin-log foreground model
(Equation 4), from the p2 data sets over the full-band frequency range 50 < a < 100 MHz. In
each case, the three data sets analysed have Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red) and 14 ≥ GHA > 18 (blue).
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Figure 9: MAP flattened Gaussian signal components overlaid on (3 − )Fg) residuals (top
subfigures) and (3 − <=) residuals, with <= = )Fg,n + )21 and )Fg,n + )21 a n-term linlog
polynomial foreground model with = = 6 (left) and = = 7 (right), in fits to GHA = 8 (top row)
and 12 (bottom row) p2 EDGES low band data sets. The RMS of the residuals are listed in
Table 4.
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Figure 10: As in Figure 9 but for a fit to the GHA = 16 hour p2 EDGES low band data set. The
RMS of the residuals are listed in Table 4.
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3.3.3 GHA dependence of the amplitude and shape of the 21 cm signal fitting across
alternate sub-bands

Fitting to the full-band data provides constraints, on the 21 cm signal, that are most directly
comparable with those obtained in B18. However, in the absence of systematic-free data at
the low end of the band, in the data sets under consideration here, we also perform analyses
of sub-bands of the data that excludes this systematics-contaminated region. When selecting
the specific sub-band to analyse a compromise must be found between between systematic
suppression and use of a band that is larger than the 65 < a < 95 MHz sub-band, used for the
analysis shown in Figures 6 and 7, in order to reduce model degeneracy.

Figures 11 and 12 show the posterior probability distributions for the flattened Gaussian 21
cm signal parameters when jointly fitting 55 < a < 100 MHz and 60 < a < 100 MHz sub-band
of the p2 data sets, respectively, in each case with = = 6 (top sub-figures) and = = 7 (bottom
sub-figures) lin-log foreground models.

Figures 13 – 14 shows the MAP flattened Gaussian signal components (3 − <=) residuals,
with <= = )Fg,n + )21 and )Fg,n + )21 a n-term linlog polynomial foreground model with = = 6
(left) and = = 7 (right), in fits to 55 < a < 100 MHz sub-bands of GHA = 8, 12 and 16 hour p2
EDGES low band data sets. Figures 15 – 16 shows the corresponding MAP flattened Gaussian
signals in fits to 60 < a < 100 MHz sub-bands of the data sets. Any residual systematic
effects that are present are less visually apparent in the residuals of the MAP fits to either the
55 < a < 100 MHz or 60 < a < 100 MHz sub-bands of the data sets. There is a reasonable
level of consistency between the MAP signal estimates in the two sub-bands; however, the MAP
signals are not consistent between the foreground models or as a function of GHA. Similar
conclusions can be drawn from the posteriors for the parameters of the signals in the various
cases considered. In addition, the posteriors on the parameters also illustrate the increasing
degeneracy between probable signal models when fitting to the narrower sub-band of the data
with the higher complexity foreground model.
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Figure 11: Posterior probability distributions of the parameters of a flattened Gaussian 21 cm
signal model, when jointly estimated with a 6 (top) or 7 (bottom) term lin-log foreground model
(Equation 4), from the p2 data sets over the sub-band frequency range 55 < a < 100 MHz. In
each case, the three data sets analysed have Galactic hour angle ranges: 6 ≥ GHA > 10 (grey),
10 ≥ GHA > 14 (red) and 14 ≥ GHA > 18 (blue).
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Figure 12: As in Figure 11 but when fitting the data sets over the sub-band frequency range
60 < a < 100 MHz.
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Figure 13: MAP flattened Gaussian signal components overlaid on (3 − )Fg) residuals (top
subfigures) and (3 − <=) residuals, with <= = )Fg,n + )21 and )Fg,n + )21 a n-term linlog
polynomial foreground model with = = 6 (left) and = = 7 (right), in fits to GHA = 8 (top
row) and 12 (bottom row) p2 EDGES low band data sets over the sub-band frequency range
55 < a < 100 MHz.
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Figure 14: As in Figure 13 but for a fit to the GHA = 16 hour p2 EDGES low band data set.
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Figure 15: MAP flattened Gaussian signal components overlaid on (3 − )Fg) residuals (top
subfigures) and (3 − <=) residuals, with <= = )Fg,n + )21 and )Fg,n + )21 a n-term linlog
polynomial foreground model with = = 6 (left) and = = 7 (right), in fits to GHA = 8 (top
row) and 12 (bottom row) p2 EDGES low band data sets over the sub-band frequency range
60 < a < 100 MHz.
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Figure 16: As in Figure 15 but for a fit to the GHA = 16 hour p2 EDGES low band data set.
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3.3.4 Limitations of data model

The components of the data model used in this memo are described in Section 2.1. They include
a flattened Gaussian model for the 21 cm signal, a lin-log polynomial foreground model with
either = = 6 or = = 7 terms and a model for the data covariance matrix that assumes that the
noise on the data is Gaussian and white. It is evident from the foreground posteriors, which
typically have oscillating positive and negative coefficients (see Appendix C), that the nominal
model for the foreground used here must also be modelling non-foreground structure in the
data. This additional structure could be due, for example, to imperfections in data calibration,
chromaticity correction or RFI excision. Better understanding of these systematics would be
valuable. Investigations to understand sources of systematics, in general, is ongoing throughout
the EDGES collaboration.
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Figure 17: As in Figure 8 but for a narrower * (0, 40) uniform prior on the flattening factor, g,
of the flattened Gaussian 21 cm model.
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B Fixing individual 21 cm signal parameters to match estim-
ates recovered in B18

Given the degeneracy between 21 cm signal models when fitting to data restricted to the
65 < a < 95 MHz sub-band, one could ask, hypothetically, whether a given level of a priori
knowledge of the signal would be sufficient to eliminate that degeneracy5. The impact of
imposing a restrictive prior on a single parameter of the 21 cm signal is illustrated in Figures 18
and 19. Restricting the central frequency or width of the 21 cm signal model to their respective
means recovered in B18 results in stronger constraints on the the non-restricted parameters and
greater consistency with the values of those parameters found in B18. The impact of fixing the
amplitude or g is less strong and has a greater GHA-dependence.

5Physical motivation for such a procedure could arise if strong external constraints the signal were available;
however, given current constraints, fixing parameters in this manner is less strongly motivated.
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Figure 18: The impact of a restrictive prior on a single parameter of the 21 cm signal. [Top]
The posterior probability distributions of the parameters of a flattened Gaussian 21 cm signal
model, when jointly estimated with a 6 term lin-log foreground model (Equation 4), from the
p2 data sets over the sub-band frequency range 65 < a < 95 MHz, with a uniform prior on the
signal amplitude between � = 0.5 ± 0.1% K. [bottom] As top, but assuming a uniform prior on
the central frequency of the 21cm signal between a0 = 78.1 ± 0.1% MHz.
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Figure 19: The impact of a restrictive prior on a single parameter of the 21 cm signal. [Top] The
posterior probability distributions of the parameters of a flattened Gaussian 21 cm signal model,
when jointly estimated with a 6 term lin-log foreground model (Equation 4), from the p2 data
sets over the sub-band frequency range 65 < a < 95 MHz, with a uniform prior on the signal
amplitude between F = 18.7 ± 0.1% MHz. [bottom] As top, but assuming a uniform prior on
the central frequency of the 21cm signal between g = 7.0 ± 0.1%.
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C Foreground parameter posteriors

Figure 20: Posterior probability distributions of the parameters of a 6 term lin-log foreground
model (Equation 4), when jointly estimated with a flattened Gaussian 21 cm signal model,
from three p1 EDGES low band data sets with Galactic hour angle ranges: 6 ≥ GHA > 10
(grey), 10 ≥ GHA > 14 (red) and 14 ≥ GHA > 18 (blue), over the restricted frequency range
65 < a < 95 MHz.
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Figure 21: As in Figure 20 but for data set produced by processing the raw data with the
Monsalve-pipeline.
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Figure 22: Posterior probability distributions of the parameters of a 7 term lin-log foreground
model (Equation 4), when jointly estimated with a flattened Gaussian 21 cm signal model,
from three p1 EDGES low band data sets with Galactic hour angle ranges: 6 ≥ GHA > 10
(grey), 10 ≥ GHA > 14 (red) and 14 ≥ GHA > 18 (blue), over the restricted frequency range
65 < a < 95 MHz.
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Figure 23: As in Figure 22 but for data set produced by processing the raw data with the
Monsalve-pipeline.
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Figure 24: Posterior probability distributions of the parameters of a 6 term lin-log foreground
model (Equation 4), when jointly estimated with a flattened Gaussian 21 cm signal model, from
three Monsalve EDGES low band data sets with Galactic hour angle ranges: 6 ≥ GHA > 10
(grey), 10 ≥ GHA > 14 (red) and 14 ≥ GHA > 18 (blue), over the full EDGES-low frequency
range 50 < a < 100 MHz.
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Figure 25: As in Figure 24 but for the parameters of a 7 term lin-log foreground model.
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