
wterms_memo

August 30, 2021

1 Simultaneous Calibration and Signal Fits for Different Numbers
of Cal terms

Steven Murray 08/27/21

This short memo outlines simple tests performed to understand the impact of the choice of number
of calibration terms used when simultaneously fitting for signal and calibration on semi-simulated
data.

To provide a short recap: the idea here is to simultaneously fit both calibration data and field data
where the model for the calibration sources is:

TNSQsrc − csrcTsrc = KsrcTNW − TL +Nsrc, (1)

and the model for the field data is

TNSQant − cantT21 = KantTant − TL + cantTFG +Nant.

Here, the exact definition of each of the terms is unimportant, but not that all of the T ’s except Tsrc
are unknown models to be fit, and all other variables are measured. Everything on the RHS is linear
in its parameters (i.e. the temperatures are linear polynomial/linlog models) and is marginalized
analytically.

The final point is that the assumed Gaussian noise in both cases is dominated by the variance of
the measured Q multiplied by T 2

NS, i.e. it depends on the unknown model.

To get the maximum likelihood parameters, the method is essentially to choose a set of parameters
for the models on the LHS (i.e. TNS and T21), then solve the ML of all the parameters on the
RHS with standard linear algebra, find the residual and χ2, and use that χ2 as the likelihood in a
standard downhill-gradient solver. In the end, we have our ML parameters for TNS and T21, but
can obtain the other linear parameters as well, if needed.

To test this code, we use simulated inputs. Now, it is important to use realistic simulated inputs.
Therefore, we use an actual calibration observation (in this case 2015-09) to obtain data for Ksrc
and csrc. Note that the values we use here are the smooth models of these values, not the noisy
measured data. This makes them ideal (as if we had simulated them from scratch, with the correct
assumptions for the above model -- namely that the K and c are essentially noiseless).

1

The last (and most important) thing to simulate is Q. To do this, for the calibration sources, we
use the calibration solutions from the same observation (i.e. the smooth polynomial models that
provide a best fit to the real data) and use them to ”decalibrate” the measured input temperature,
Tsrc (which is, under this model, noiseless, as we ”know” the exact input temperature). This gives
us a noiseless model for Qsrc. To this, noise should be added, and we can do this in a number of
ways (we build it up in increments).

As for Qant, we do a similar thing: we choose some input model for T21 and TFG, then decalibrate
with the same polynomial models.

Note that in all of this, we use the calibrated polynomials just to achieve a realistic input model --
it would not be at all inconsistent to change these models, since all the input mock data would be
consistently simulated with whatever values were chosen (and the K and c do not at all depend on
the noise wave temperatures). In fact, to make it easier to precisely compare the output model for
TNS, we do in fact choose a slightly modelfied form for it that essentially uses round numbers for
each of the coefficients.

We test incrementally in a few stages:

1. Pure simulated Q without any noise. This is actually a bit of a hack, because the likelihood
depends on the assumed magnitude of the noise (it’s not purely minimizing the RMS of
residuals, but includes a term of the determinant of the covariance). When doing this test,
we merely force the likelihood into a ”minimize RMS” form.

2. Small constant variance for both calibration and antenna inputs, added exactly as Gaussian
noise to Q, and input as the variance to the likelihood.

3. For the calibration sources, using a variance derived from the measurements themselves (i.e.
taking the variance over integrations). We use this (non-constant) variance to generate noise
on Q, and supply the likelihood with this exact variance (so everything should be exactly
consistent still, but with a more realistic level of noise).

4. Finally, instead of simulating Qsrc, use the actual measured Qsrc, and input the variance as the
estimated variance of these measurements. This has a chance to be somewhat inconsistent, if
the real measurements are non-Gaussian or correlated between frequencies. Furthermore, the
Qant here is simulated still based on the input models, but we should note that those input
models might not line up with the actual real gains perfectly, in which case the input data
itself would not be entirely consistent.

1.0.1 Import and Setup

[1]: from edges_cal import CalibrationObservation
from edges_analysis.analysis.calibrate import LabCalibration
import numpy as np
from edges_estimate.eor_models import AbsorptionProfile
from edges_estimate.likelihoods import DataCalibrationLikelihood
from edges_cal.modelling import LinLog, Polynomial, UnitTransform
from scipy import stats
from yabf import ParamVec, run_map
from pathlib import Path
from edges_cal.simulate import simulate_qant_from_calobs

2

import matplotlib.pyplot as plt
import edges_cal as ec
import edges_io as eio
import edges_analysis as ea
import edges_estimate as ee

Here are the versions of the relevant packages used for this memo:

[2]: print("edges-io: ", eio.__version__)
print("edges-cal: ", ec.__version__)
print("edges-analysis: ", ea.__version__)
print("edges-estimate: ", ee.__version__)

edges-io: 2.5.4.dev6+g72be093
edges-cal: 3.4.0
edges-analysis: 2.1.1
edges-estimate: 1.0.0

For completeness, here is the input calibration observation we use as a reference:

[3]: def get_calobs(cterms=6, wterms=5):
calobs = CalibrationObservation(

"/data5/edges/data/CalibrationObservations/Receiver01/
↪→Receiver01_25C_2015_09_02_040_to_200MHz/",

f_low=50.0,
f_high=100.0,
run_num={"receiver_reading": 6},
repeat_num=1,
cterms=cterms,
wterms=wterms,
load_kwargs= {"t_load": 300, "t_load_ns": 350},
load_spectra = {

"hot_load": {"ignore_times_percent": 10},
"ambient": {"ignore_times_percent": 7},
"open": {"ignore_times_percent": 7},
"short": {"ignore_times_percent": 7},

},
load_s11s = {"lna":{'n_terms': 11, 'model_type': 'polynomial'}}

)

labcal = LabCalibration(
calobs=calobs, s11_files=sorted(Path('/data5/edges/data/S11_antenna/

↪→low_band/20160830_a/s11').glob('*.s1p'))
)

return calobs, labcal

[4]: calobs, labcal = get_calobs()

3

Define the input model for T21:

[5]: eor = AbsorptionProfile(
freqs=calobs.freq.freq,
params={

"A": {'fiducial': 0.5, 'min': 0, 'max': 1.5, "ref": stats.norm(0.5,␣
↪→scale=0.01) },

"w": {'fiducial': 15, 'min': 5, 'max': 25, "ref": stats.norm(15,␣
↪→scale=0.1)},

"tau": {'fiducial': 5, 'min': 0, 'max': 20, "ref": stats.norm(5,␣
↪→scale=0.1)},

"nu0": {'fiducial': 78, 'min': 60, 'max': 90, 'ref': stats.norm(78,␣
↪→scale=0.1)},

}
)

And define the input model for TFG:

[6]: fg = LinLog(n_terms=5, parameters=[2000, 10, -10, 5, -5])

Define a fiducial ideal model for TNS (useful for precise comparisons of input vs output instead of
using the measured model from the calibration observation):

[7]: def get_tns_model(calobs, ideal=True):
if ideal:

p = np.array([1575, -175, 70.0, -17.5, 7.0, -3.5])
else:

p = calobs.C1_poly.coeffs[::-1] * labcal.calobs.t_load_ns

t_ns_model = Polynomial(parameters=p, transform=UnitTransform())

t_ns_params = ParamVec(
't_lns', length=len(p),
min=p - 100,
max=p + 100,
ref=[stats.norm(v, scale=1.0) for v in p],
fiducial=p

)
return t_ns_model, t_ns_params

Define a function to simulate the antenna 3-position ratio:

[16]: def sim_antenna_q(labcal, ideal_tns=True):
calobs = labcal.calobs

spec = fg(x=calobs.freq.freq) + eor()['eor_spectrum']

tns_model, _ = get_tns_model(calobs, ideal=ideal_tns)

4

scale_model = tns_model.with_params(tns_model.parameters/calobs.t_load_ns)

return simulate_qant_from_calobs(
calobs, ant_s11=labcal.antenna_s11, ant_temp=spec,
scale_model=scale_model

)

Define a simple function to get a likelihood for given input choices:

[18]: def get_likelihood(labcal, qvar_ant, cal_noise, simulate=True, ideal_tns=True):
calobs = labcal.calobs

q = sim_antenna_q(labcal, ideal_tns=ideal_tns)

if isinstance(qvar_ant, (int, float)):
qvar_ant = qvar_ant * np.ones_like(labcal.calobs.freq.freq)

q = q + np.random.normal(scale=qvar_ant)

tns_model, tns_params = get_tns_model(calobs, ideal=ideal_tns)

if ideal_tns:
scale_model = Polynomial(parameters=np.array(tns_params.fiducial)/

↪→labcal.calobs.t_load_ns, transform=UnitTransform())
else:

scale_model = None

return DataCalibrationLikelihood.from_labcal(
labcal,
q_ant=q,
qvar_ant=qvar_ant,
fg_model=fg,
eor_components=(eor,),
sim=simulate,
scale_model=scale_model,
t_ns_params=tns_params,
cal_noise=cal_noise,

)

And a function to view the results:

[29]: def view_results(lk, res_data, sim_tns=True, calobs=calobs, label=None,␣
↪→fig=None, ax=None, c=0):

"""Simple function to create a plot of input vs expected TNS and T21."""
eorspec = lk.partial_linear_model.get_ctx(params=res_data.x)

if fig is None:
plot_input = True

5

fig, ax = plt.subplots(2, 2, figsize=(15, 7), sharex=True)
else:

plot_input = False

color = f"C{c}"
nu = calobs.freq.freq

tns_model, _ = get_tns_model(calobs, ideal=sim_tns)
tns_model = tns_model(nu)

if plot_input:
ax[0, 0].plot(nu, tns_model, label='Input', color='k')

ax[0, 0].plot(nu, eorspec['tns'], label='Estimated' + (' '+label if label␣
↪→else ''), color=color)

ax[1, 0].plot(nu,eorspec['tns'] - tns_model, label=r"$\Delta T_{\rm NS}$"␣
↪→if plot_input else None, color=color)

ax[1, 0].plot(nu,(eorspec['tns'] - tns_model)*lk.data['q']['ant'], ls='--',␣
↪→color=color, label=r"$\Delta T_{\rm NS} Q_{\rm ant}$" if plot_input else␣
↪→None)

ax[0, 0].set_title(r"$T_{\rm NS}$")
ax[0, 0].set_ylabel("Temperature [K]")

if plot_input:
ax[0, 1].plot(nu,eor()['eor_spectrum'], color='k')

ax[0, 1].plot(nu,eorspec['eor_spectrum'])
ax[0, 1].set_title(r"T_{21}")
delta = eorspec['eor_spectrum'] - eor()['eor_spectrum']
ax[1, 1].plot(nu, delta, color=color, label=f"Max $\Delta = {np.max(np.

↪→abs(delta))*1000:1.2e}$mK")
ax[1, 0].set_ylabel("Difference [K]")

ax[1, 0].set_xlabel("Frequency")
ax[1, 1].set_xlabel("Frequency")

ax[0, 0].legend()
ax[1, 0].legend()
ax[1,1].legend()

return fig, ax

6

1.1 Test 1: No Noise

See the above list for the details of the simulation.

[30]: lk = get_likelihood(labcal, qvar_ant=0, cal_noise=0.0, simulate=True,␣
↪→ideal_tns=True)

[31]: res = run_map(lk.partial_linear_model)
view_results(lk, res);

Figure 1 | Results of fitting to simulated data without any noise. The results are perfect to
machine precision.

1.2 Test 2: Small Constant Noise

[32]: lk = get_likelihood(labcal, qvar_ant=1e-10, cal_noise=1e-10, simulate=True,␣
↪→ideal_tns=True)

[33]: res = run_map(lk.partial_linear_model)
view_results(lk, res);

7

Figure 2 | Again, comparing TNS and T21 inputs vs. outputs, this time with noise in the simulation.
While the difference in TNS is around 10mK, it is still rather smooth, and the effect on T21 is sub-mK.

1.3 Test 3: Realistic Non-Constant Noise

In this case, setting cal_noise='data' means that we use the intrinsic measured noise values of
the calibration observation. We still use a constant small noise for the antenna data.

[34]: lk = get_likelihood(labcal, qvar_ant=1e-10, cal_noise='data', simulate=True,␣
↪→ideal_tns=True)

[35]: res = run_map(lk.partial_linear_model)
view_results(lk, res);

8

Figure 3 | The same as Figs 1+2, but this time for non-constant noise (and larger amplitude
noise). The estimate of T21 is now off by 2.5mK, but this is still very good.

1.4 Test 4: Measured Calibration Q, Simulated Antenna

As mentioned in the introduction, this test is slightly inconsistent, at least if the initial estimated
calibration parameters are different to the actual gains -- or even if they are different to the final
estimated gains.

[36]: lk = get_likelihood(labcal, qvar_ant=1e-10, cal_noise='data', simulate=False,␣
↪→ideal_tns=False)

[37]: res = run_map(lk.partial_linear_model)
view_results(lk, res, sim_tns=False);

Figure 4 | The result of attempting to simultaneously fit a ”decalibrated” input sky model with
real calibration data. The inconsistency of the decalibration being performed with a non-true
calibration solution has quite a significant impact on estimation of both TNS and T21.

1.5 Test 5: Increasing Number of calibration terms

The most obvious reason that Test 4 didn’t work is that the initial estimated calibration wasn’t
accurate. To make it more accurate, we could ostensibly increase the number of terms in the
solution.

9

[38]: fig, ax = None, None

for i, terms in enumerate([5, 8, 10, 12, 15, 18, 23, 30]):
calobs_, labcal_ = get_calobs(cterms=terms, wterms=terms)
lk = get_likelihood(labcal_, qvar_ant=1e-8, cal_noise='data',␣

↪→simulate=False, ideal_tns=False)
res = run_map(lk.partial_linear_model)
fig, ax = view_results(lk, res, sim_tns=False, fig=fig, ax=ax,␣

↪→label=f'cterms=wterms={terms}', calobs=labcal_.calobs, c=i);

/data4/smurray/Projects/radio/EOR/Edges/edges_estimate/src/edges_estimate/likeli
hoods.py:414: RuntimeWarning: invalid value encountered in log

logdetCinv = np.log(np.linalg.det((basis / var).dot(basis.T)))
/data4/smurray/Projects/radio/EOR/Edges/edges_estimate/src/edges_estimate/likeli
hoods.py:414: RuntimeWarning: invalid value encountered in log

logdetCinv = np.log(np.linalg.det((basis / var).dot(basis.T)))
/home/smurray/miniconda3/envs/edges/lib/python3.9/site-
packages/scipy/optimize/_numdiff.py:557: RuntimeWarning: invalid value
encountered in subtract

df = fun(x) - f0
/data4/smurray/Projects/radio/EOR/Edges/edges_estimate/src/edges_estimate/likeli
hoods.py:414: RuntimeWarning: invalid value encountered in log

logdetCinv = np.log(np.linalg.det((basis / var).dot(basis.T)))

Figure 5 | Resulting estimates for T21 for a range of input number of terms (keeping cterms and
wterms equal). We see that the estimate of T21 gets significantly better as we add more terms,
suggesting that the underlying model of calibration is better matched. However, The model for TNS
becomes significantly more structured for the higher numbers of terms, which may not be a great
representation of reality. It is possible that more terms may be required for some of the calibration

10

polynomials, but not others.

11

	Simultaneous Calibration and Signal Fits for Different Numbers of Cal terms
	Import and Setup
	Test 1: No Noise
	Test 2: Small Constant Noise
	Test 3: Realistic Non-Constant Noise
	Test 4: Measured Calibration Q, Simulated Antenna
	Test 5: Increasing Number of calibration terms

