Investigating Ground planes for EDGES Low

Nivedita Mahesh

ASU
This report analyses the different ground planes (in shape and size) below the EDGES blade antenna and summarises its effect on the beam chromaticity. For each case, I plot the beam derivative plot and the residues to a 5 term loglog fit. In most cases, in the residue plots, I show the curves corresponding to either the $10 \mathrm{~m} \times 10 \mathrm{~m}$ or extended GP for comparison. All the simulations are done with EDGES low band panels and soil parameters: permittivity $=3.5$; conductivity $=0.02 \mathrm{~S} / \mathrm{m}$.

This table summarizes the average RMS of the residues on fitting a 5 term lolog foreground model to the simulated spectra from each case. The fit was done on 2 hr GHA binned spectra. The residues were averaged and the rms was calculated for this averaged residues.

UPDATES:

- Added a different chromaticity metric to each plot. Average RMS - This is the average of the RMS that was calculated for each 1 hour block of averaged data. Up until now, the residues from each 1 hour fit was averaged and then the RMS was calculated
- A new table was created with this metric
- To make one on one comparisons with Alan's analysis in report \#317, one case was replicated:
- EDGES 3 from \#300 over the 48.8 m by 48.8 ground plane with a soil conductivity of $2 \mathrm{e}-3$. The simulation was carried out from 60 to 120 MHz . On fitting a 5 term loglog model to each one hour block of data and average all of the RMS to get a value of 81 mK Vs 86 mK quoted in \#317.

Size/ Configuration	Avg RMS (LogLog) (52-98MHz)	Area(m²)	Freq Res (MHz)	Avg RMS (LinLog) $(52-98 \mathrm{MHz})$
10x10m (old ground plane)	280 mK	100	2	220 mK
10x10m (old ground plane)	340 mK	100	1	330 mK
30x30m perforated	60 mK	600	2	40 mK
30x30m perforated	71 mK	600	1	40 mK
Circle 4.9m radius	370 mK	75.43	2	300 mK
Circle 9.8m radius	170 mK	301	2	180 mK
Circle 15m radius	70 mK	706	2	80 mK
Hexagon 5m sides	140 mK	64.95	1	130 mK
Hexagon 7.5m sides	200 mK	146.14	1	200 mK
Hexagon 15m sides	94 mK	584.57	1	50 mK
Hexagon 17m sides	59 mK	750.84	1	40 mK
Square 50x50m	70 mK	2500	2	40 mK
Perforated 30m X 30m;(5/side)	67 mK	600	1	30 mK
Perforated 40m X 40m; (6/side)	78 mK	1200	1	30 mK
Perforated 49.2 X 49.2m; (3/side)	90.3 mK	1476	1	40 mK
Staggered 7 by 7	108 mK	312.5	1	60 mK
Staggered 8 by 9	57 mK	425	1	30 mK
Staggered 7 by 9	89 mK	562.5	1	60 mK
			2	

Size/ Configuration	Avged RMS (LogLog) (52-98MHz)	Area(m²)	Freq Res (MHz)	$\begin{aligned} & \text { Avged RMS } \\ & \text { (LinLog) } \\ & \text { (52-98MHz) } \end{aligned}$
10x10m (old ground plane)		100	2	
10x10m (old ground plane)		100	1	
$30 \times 30 \mathrm{~m}$ perforated		600	2	
$30 \times 30 \mathrm{~m}$ perforated	291 mK	600	1	238 mK
Circle 4.9m radius		75.43	2	
Circle 9.8 m radius		301	2	
Circle 15 m radius		706	2	
Hexagon 5m sides		64.95	1	
Hexagon 7.5 m sides		146.14	1	
Hexagon 15m sides	393 mK	584.57	1	345 mK
Hexagon 17m sides	334 mK	750.84	1	285 mK
Square $50 \times 50 \mathrm{~m}$		2500	2	
Perforated 30m X 30m; $5 /$ side)	279 mK	600	1	220 mK
Perforated $40 \mathrm{~m} \times 40 \mathrm{~m}$; (6/side)	246 mK	1200	1	186 mK
Perforated 49.2 X 49.2m; (3/side)	245 mK	1476	1	182 mK
Staggered 7 by 7	401 mK	312.5	1	331 mK
Staggered 8 by 9	333 mK	425	1	279 mK
Staggered 7 by 9	395 mK	562.5	1	345 mK
Case replicated; 60-120MHz; EDGES 3	94 mK	1405	1	81 mK

1.) Simple Circle -4.9 m radius (area<10m $\times 10 \mathrm{~m} \mathrm{GP}$)

Fig1: Gain derivative Vs Frequency for a circular ground plane with radius of 4.9 m . (Right): The Gain vs derivative plot for the $10 m \times 10 m$ GP for comparison.

Fig2: Residues to a 5 term loglog foreground model Vs Frequency for the $10 \mathrm{~m} \times 10 \mathrm{~m}$ GP and a 4.9 m radius circular GP. The RMS of the averaged residues of the circular one is larger. The circular GP covers less area compared to the $10 m \times 10 m$ GP.

2.) Simple Circle - 9.8 m radius (area <extended GP)

Fig3: Gain derivative Vs Frequency for a circular ground plane with radius 9.8m. (Right): The Gain vs derivative plot for the extended GP.

Fig4: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a $9.8 m$ radius circular GP. The RMS of the averaged residues is 3 times higher for the circular GP. The circular GP covers roughly half the area as the extended GP.

3.) Simple Circle - 15 m radius (area~extended ground plane)

Fig5:(Left) Gain derivative Vs Frequency for a circular ground plane. (RIght): The Gain vs derivative plot for the extended GP.

Fig6: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a $15 m$ radius circular GP. The RMS of the averaged residues is roughly the same.

4.) Rectangle (20m across); + Saw tooth(20 triangles)

Fig7:(Left) Gain derivative Vs Frequency for the extended GP with more triangles. (Right): The Gain vs derivative plot for the extended GP.

Fig8: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and the extended one with more triangles. The RMS of the averaged residues is almost the same.

Adding more triangles helped a little.

5.) Hexagon - 5m edge (area < $10 \mathrm{~m} \times 10 \mathrm{~m}) 65 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \mathrm{100m}{ }^{\wedge} 2$

Fig9:(Left) Gain derivative Vs Frequency for a Hexagon shaped GP with edge side of 5m. (Right): The Gain vs derivative plot for $10 m \times 10 m$.

Fig10: Residues to a 5 term loglog foreground model Vs Frequency for the $10 \mathrm{~m} \times 10 \mathrm{~m}$ GP and a hexagon (5m) GP. The RMS of the averaged residues is lower!. The hexagon GP covers roughly the lower area than the $10 \mathrm{~m} \times 10 \mathrm{~m}$!!.

6.) Hexagon - 7.5m edge (area $>10 \mathrm{~m} \times 10 \mathrm{~m}$) $146 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 100 \mathrm{~m}^{\wedge} \mathbf{2}$

Fig11:(Left) Gain derivative Vs Frequency for a Hexagon shaped GP with edge side of $7.5 m$. (Right): The Gain vs derivative plot for the $10 \mathrm{~m} \times 10 \mathrm{~m}$ GP.

Fig12: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a hexagon (7.5m) GP. The RMS of the averaged residues is larger than the $10 \mathrm{mX10m}$ GP.

7.) Hexagon - 15m edge (area < 30m x 30m) 586m^2 Vs ~600m^2

Fig13:(left) Gain derivative Vs Frequency for a Hexagon shaped GP with an edge side of $15 m$. (Right): The Gain vs derivative plot for the extended GP.

Fig14: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a hexagon (15m) GP. The RMS of the averaged residues is a little larger than the extended.

8.) Hexagon-17m edge (area $>30 \mathrm{~m} \times 30 \mathrm{~m}) 750 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 600 \mathrm{~m}^{\wedge} 2$

Fig15:(Left) Gain derivative Vs Frequency for a Hexagon shaped GP with edge side of 17 m . (Right): The Gain vs derivative plot for the extended GP.

Fig16: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a hexagon (17m) GP. The RMS of the averaged residues of the hexagon is lower than the extended.

9.) Square -50 m side (area $>30 \mathrm{~m} \times 30 \mathrm{~m}$) $2500 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 600 \mathrm{~m}^{\wedge} 2$

Fig17:(Right) Gain derivative Vs Frequency for a $50 \mathrm{~m} \times 50 \mathrm{~m}$ square GP. (Left): The Gain vs derivative plot for the extended GP.

Fig18: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a square $50 \mathrm{~m} \times 50 \mathrm{~m}$ GP. The RMS of the two are roughly the same

10.) Perforated- 40 m (6 triangles $/$ side)) $\left(\right.$ area $>30 \mathrm{~m} \times 30 \mathrm{~m}$) $2500 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 600 \mathrm{~m}^{\wedge} \mathbf{2}$

Fig19:Gain derivative Vs Frequency for a perforated 40m X 40m.

Fig20: Residues to a 5 term loglog foreground model Vs Frequency for the extended GP and a perforated 40 m X 40m GP. The RMS of the two are roughly the same.

11.) Staggered - 7 by 7 (area $\sim 30 \mathrm{~m} \times 30 \mathrm{~m}$) $700 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 600 \mathrm{~m}^{\wedge} \mathbf{2}$

Fig21: Gain derivative Vs Frequency for a Staggered GP with 7 titles and 7 rows.

Fig22: Residues to a 5 term linlog foreground model Vs Frequency for the extended GP and a staggered 7by 7 GP.
12.) Staggered -8 by $9(\operatorname{area}<40 \mathrm{~m} \times 40 \mathrm{~m}) 900 \mathrm{~m}^{\wedge} 2 \mathrm{Vs} \sim 1200 \mathrm{~m}^{\wedge} 2$

Fig23: Gain derivative Vs Frequency for a Staggered GP with 8 titles and 9 rows.

Fig24: Residues to a 5 term linlog foreground model Vs Frequency for the extended GP and a staggered 8 by 9 GP.

13.) Staggered - 7 by 9 (area < 40m x 40m) $787 \mathrm{~m}^{\wedge} 2 \mathrm{Vs}<1200 \mathrm{~m}^{\wedge} 2$

Fig25: Gain derivative Vs Frequency for a Staggered GP with 7 titles and 9 rows.

Fig26: Residues to a 5 term linlog foreground model Vs Frequency for the extended GP and a staggered 7 by 9 GP. The RMS of the two are roughly the same.
14.) Perforated $49.2 \times 49.2 \mathrm{~m}$ (3 triangles/side) - inner square of $30 \mathrm{~m} \times 30 \mathrm{~m}$ and triangles of 10 m base and 9.6 m height

Fig27: Gain derivative Vs Frequency for a perforated ground with a central $30 \times 30 \mathrm{~m}$ and 3 triangles on each side of height 9.6 m and base 10 m .

Fig28: Residues to a 5 term linlog foreground model Vs Frequency for the extended GP and a perforated 48.6×48.6 m. The RMS of the two are roughly the same.

15.) Perforated $49.2 \times 49.2 \mathrm{~m}$ (3 triangles/side) - inner square of $30 \mathrm{~m} \times 30 \mathrm{~m}$ and triangles of 10 m base and 9.6 m height

Soil conductivity changed from $0.02 \mathrm{~S} / \mathrm{m}$ to $0.002 \mathrm{~S} / \mathrm{m}$. And the simulation frequency from 50 to 100 MHz to 60 to 120 MHz . The size is slightly different from memo 317 .

$$
\text { One side of Inner square }=2 m+6 * 5 m=32 m
$$

$$
2 n d \text { side of inner square }=2 m+12^{*} 2.4 m=30.8 \mathrm{~m}
$$

If the triangles are 9.6 m tall on each side, the extents are $=50 \mathrm{~m}$ X 51.2, m ?

Fig29: Gain derivative Vs Frequency for a perforated ground with a central $30 \times 30 \mathrm{~m}$ and 3 triangles on each side of height 9.6 m and base 10 m with soil conductivity being $0.002 \mathrm{~S} / \mathrm{m}$

Fig30: Residues to a 5 term
linlog foreground model Vs Frequency for the perforated $49.2 \times 49.2 m$.
15.) Perforated $48.8 \times 48.8 \mathrm{~m}$ (3 triangles/side) - inner square of $30 \mathrm{~m} \times 30 \mathrm{~m}$ and triangles of 9.6 m base and 10 m height (replicating the case in memo 317)

Fig31: Gain derivative Vs Frequency for a perforated ground with a central $30 \times 30 \mathrm{~m}$ and 3 triangles on each side of height 9.6 m and base 10 m with soil conductivity being $0.002 \mathrm{~S} / \mathrm{m}$

Fig32: Residues to a 5 term linlog foreground model Vs Frequency for the perforated 48.8 X $48.8 m$

