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ABSTRACT

This memo seeks to develop a simple Bayesian model (or set thereof) for estimating phenomenological
parameters of the 21 cm signal during Cosmic Dawn/EoR. From the set of possible particular models,
it discusses benefits and trade-offs concerning computational efficiency and accuracy.

1 Introduction

The purpose of this memo is to specify an exact Bayesian model for parameter estimation in the case of EDGES. In fact,
it will present a family of such models, with some specifications drawing particular attention. The most general model
is really rather too general for our purposes here (eg. Liu2012). Instead, we assume that the data we have on-hand has
already been averaged over LST, and is thus purely a function of frequency.

In §2 we will introduce the general form for such a likelihood, and our nomenclature and assumptions. Following this,
we will attempt to draw conclusions.

2 Overview of Bayesian Parameter Estimation

Bayes’ theorem is

P(~p|D) =
π(~p)L(D|~p)
P(D)

, (1)

where the LHS is called the “posterior” and denotes the probability of the statistical variables (or “parameters”) ~p being
a given value, given the data D. On the RHS, π is the called the “prior”, and P(D) is called the “evidence”, which we
shall largely ignore for the rest of the memo, since MCMC is not sensitive to it. Finally, L is the “likelihood” of the
data given specific values of the parameters.

This equation holds all the information we can ever use. Nevertheless, two cases are of potential interest to us. The
first is the case in which some of the ~p is dependent on other elements of ~p. For example, perhaps we are interested in
soil temperature at a range of times. At each time, the temperature is a random variable, so ~p contains Nt parameters,
labelled, say, Ti. However, we may know that these temperatures are drawn from a Gaussian distribution, but we are
unsure of its variance. The variance then is another parameter in ~p, upon which the ~Ti depend. This case is often called
a “Bayesian graph" or “hierarchical model". In this case, letting the dependent parameters be ~q, the prior can be written
more specifically as

π(~p) = π′(~p′)π′′(~q|~p′′), (2)

where we have used a single prime to indicate the sub-vector of ~p which do not have any dependent parameters, and
double prime to indicate its complement.
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The other case that is of interest is that in which there is some subset of parameters, let us call them ~ϕ, which we have
no interest in. For example, the Ti from above would probably fall into this category. In fact, so would the precise
values of the thermal noise1.

The process of properly “ignoring" a subset of ~p is called “marginalization", which in detail is performed by integrating
the posterior over the marginalized parameters. In practice it can be performed in two ways. Typically the simplest is to
obtain the posterior via MCMC for all parameters, in the form of a sample of points from the posterior. Marginalization
then amounts to projecting that sample onto the dimensions which are sought after. Let’s call these ~pϕ. In reality, this is
a (potentially) numerically-efficient algorithm for computing

P(~pϕ|D) =

∫
d~ϕ

π(~pϕ, ~ϕ)L(D|~pϕ, ~ϕ)

P(D)
(3)

If the parameters ~pϕ are a priori independent of ϕ (which is the only case we will consider in this memo), we can
re-write this as

P(~p|D) =
π(~p)L′(D|~p, ~ϕ)

P(D)
, with

L′(D|~p, ~ϕ) =

∫
d~ϕ π(~ϕ)L(D|~pϕ, ~ϕ) (4)

where for ease of notation we have understood that ~p = ~pϕ. While often it will be the case that the first approach
will be more efficient (especially if the integral in Eq. 4 is not separable), there are cases in which performing the
integral directly is more efficient. One such case is that of the exact values of the thermal “noise". Instead of deriving
estimates of each of them, one typically pre-marginalizes by defining L ≡ L′(D|~p, ~n). This is suitable since it is
typically assumed that thermal noise is normally-distributed and independent, rendering Eq. 4 quite manageable (in
fact, much more manageable than the likelihood of delta-functions that would ensue otherwise).

One of the primary questions that this memo seeks to answer is what difference some of the nuisance parameters make
to the “covariance function" of the data. This is an ill-defined question to begin with. However, perhaps it is more
suitably stated as: “assuming the likelihood is a multivariate normal distribution (or well approximated by one), and
that the process of marginalization over some nuisance parameters ~ϕ does not change the Gaussianity of the effective
likelihood (L′), what are the covariance matrix Σ, and mean vector µ, that uniquely characterize the likelihood after
marginalisation?”. In particular, if these assumptions are true, and the covariance function does not depend on any of ~p,
due to the symmetrical properties of the normal distribution, the covariance function that defines the likelihood may
then be interchangeably interpreted as the covariance “of the data". This would allow storing a single pre-computed
covariance matrix and using it exlusively to perform parameter inference, according to the likelihood:

lnL(D|~p) = (D − ~µ)Σ−1ϕ (D − ~µ)†, (5)

which has well-studied solutions.

Despite none of these assumptions being particularly likely, it is not unlikely that within a suitable small ball around the
maximum likelihood estimate, the likelihood (even the effective likelihood) could be well-approximated as multivariate
normal, and that in this regime it may also be roughly independent of ~p. Given the simplicity of the resulting problem if
these approximations hold, it is worth attempting to determine if they are valid for our particular problem.

3 Likelihood Construction

In this memo, as previously stated, we will exclusively consider data that is pre-averaged over LST and is thus a
function of frequency only. Henceforth, we let xj be the jth frequency-component of our model. This is understood
to be a random variable – it depends deterministically on the set of parameters ~p that we wish to constrain, and
non-deterministically on the set of nuisance parameters ~ϕ2.

1This observation leads one to ponder the extreme limit of this line of thinking: if everything “unknown" is considered as a
parameter in ~p, then L is a set of delta-functions at the set of precise values of ~p which can reproduce D. However, at the same time,
π is modified to include the probability of obtaining those sets of parameters, ultimately maintaining the equality of Bayes’ theorem
(after marginalising, as we shall see).

2Though post-marginalization is equivalent to pre-marginalization (i.e. the “direct" integration given by Eq. 4), for the remainder
of the memo we consider ~ϕ to consist only of those parameters that we wish to pre-marginalize. That is, they will not enter into any
MCMC sampling routine.
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We split both ~p and ~ϕ into several subsets (and potentially, further subdivisions are possible), explicitly

~p = {~p21, ~pfg, ~pbeam} (6)
~ϕ = {~ϕfg, ~ϕbeam, ~n}, (7)

where n is the thermal noise, which we exclusively consider to be nuisance parameters, and we have omitted 21 cm
signal parameters from ~ϕ as ostensibly these will never be nuisance parameters. It is clear that each of the sets (21 cm,
fg and beam) will be independent of each other. However, it is not clear whether n will be independent of any of the
other sets, as the level of thermal noise depends on both the instrument and sky.

The model can then be parameterized by

xj(~p) =
1

Nt

Nt∑
i=1

∫
d2θA(θ, ti, νj , ~pbeam, ~ϕbeam)I(θ, νj , ~psky, ~ϕsky) + ~nij(~p, ~ϕsky, ~ϕbeam), (8)

where θ is the angular location on the sky (assumed to be in equatorial co-ordinates, eg. RA and DEC), A is the primary
beam of the antenna, and I is the intensity of the sky.

The likelihood, as a function of ~p, is equivalently the probability density function of ~x (which in general is not trivial
to determine). Note that if ϕ solely consists of ~n, i.e. we only consider the thermal noise to be nuisance, and if that
thermal noise is Gaussian-distributed for any given choice of ~p, then the likelihood is multivariate normal. We will
consider this simplest of cases in detail in the next subsection, and then move to more involved cases.

3.1 No nuisance parameters

Appendix A.1 gives the derivation of the full joint-model for xj from first-principles. Summarily, it is equivalent to
Eq. 8 with

nij ∼ N
[
0,

κ√
∆ν

∫
d2θ A(θ, ti, νj)I(θ, νj)

]
. (9)

(i.e. a normally-distributed variable with mean zero and the given standard deviation). Importantly, there are no
correlations between frequencies, and therefore the covariance is diagonal.

Since the noise component is mean-zero, the expectation is simply3

µ(~p) =
1

Nt

Nt∑
i=1

∫
dαdδA(ALT (α, δ, ti), AZ(α, δ, ti), νj , ~pbeam)I(α, δ, νj , ~psky). (13)

This is a function only of ν, and we denote it

µ(~p) = µ21(~p21, ~pbeam) + µfg(~pfg, ~pbeam). (14)

These components correspond to the usual phenomenological forms for the foregrounds and 21 cm absorption trough.

As previously noted, since the noise is independent in frequency and time, the covariance is diagonal, and the standard
deviation is given by

σj =
κ

Nt

√
∆ν

Nt∑
i=1

∫
dαdδ I(α, δ, νj)A(ALTi, AZi, νj)

=
κ√
∆ν

µ(~p). (15)

3We can be a little more explicit about the time-dependence of the model. In particular, the sky is (for our purposes) constant in
time when expressed in (RA, DEC) co-ordinates (denoted α, δ). Altitude (ALT) and azimuth (AZ), for an observing site at latitude
(γ) and LST (t) are given by

ALT = sin−1 [sin δ sin γ + cos δ cos γ cos(t− α)] (10)

AZ = − tan−1

[
− sin(t− α)
sin γ cos(t− α)− cos γ tan δ

]
, (11)

where AZ is measured Westward of South4. Thus in detail we have

A(θ, t) = A(ALT (α, δ, t), AZ(α, δ, t)). (12)
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The likelihood in such a model is simply given by

lnL(~p, κ) =
∑
j

− lnσ(~p)j −
(~xj − µj(~p))

2

2σ2
j (~p)

= −
∑
j

lnκ+ lnµj(~p) +
∆ν(~xj − µj(~p))

2

2κ2µ2
j (~p)

. (16)

In this model, κ is best treated a free parameter to be fit.

Note that this model is the simplest possible – by assuming that simple 1D models for µ21 and µfg can fully capture the
averaged form of the observed sky, there is no correlation between frequency bins. This is exactly the fitting procedure
currently used. There are however two caveats to this approach:

1. This formula assumes that we have accounted for all possible variable parameters in ~p. If other variables in
truth exist, but are not included in ~p, then the model is wrong. The correct model in this case is that in which
the neglected parameters form part of ϕ and are marginalized over (either during MCMC or beforehand).
This is almost always most easily accomplished by actually running the MCMC again with all the parameters
that are considered unknown. In the next section, however, we consider how we might estimate what the
appropriate modified likelihood should be given that we would prefer to completely neglect the parameters.

2. The second caveat is that while under the stated assumptions Eq. 16 is a valid likelihood (if all unknown
parameters are accounted for in ~p), it is not necessarily the best one. That is, it does not necessarily make use
of all available information optimally. One clear way in which this is true is that the time-average on the data
removes information. Nevertheless, in this memo we are restricting ourselves to time-averaged data, so we
will not yet consider that particular generalization. The second way in which information is potentially lost is
in the priors. If the model for µ chosen is highly flexible, and not strongly founded on physics, then the priors
on its parameters may be unnecessarily wide. Furthermore, it may not be clear whether there are a priori
correlations between those parameters which may restrict the posterior. However, moving to a less-flexible
model means that µ will be less likely to be able to match reality if any parameters are ignored. In this case,
the considerations of the following section become important.

3.2 Nuisance Parameters

As in the previous section, in this section we will continue to assume that a purely phenomenological model for the
sky temperature, as a function of only ν, provides a good-enough fit to the data. However, we will assume also that
there are known random variables that are ignored, i.e. they form ~ϕ. We can view these simply as altering the proper
likelihood, given the sought-after ~p.

The most general solution is to use Eq. 4. Then we have

L′ ∝
∫
d~ϕ π(~ϕ)κ−Nt

Nt∏
j

1

µj(~p, ~ϕ)
exp

(
−∆ν( ~Dj − µj(~p, ~ϕ))2

2κ2µ2
j (~p, ~ϕ)

)
. (17)

Remember that the likelihood is a pdf as a function of the data, D, not the parameters. Even so, it is difficult to see how
one would evaluate this integral in many cases. The likelihood is not in general even Gaussian any longer.

Nevertheless, if we assume that the likelihood remains approximately Gaussian (at least close to the maximum likelihood
estimate) we may characterize the likelihood solely by the mean and covariance. There are two ways to think about this.
If we are certain that all physical effects have been accounted for (and thus our physical model of the sky reduces to a
simple function µ(~p)), but we are not sure that our model for µ(~p) adequate, then we modify the likelihood as follows.
The model is given by

xj = µj(~p, ~ϕ) + nj . (18)
The expectation of xj is

E[xj ] =

∫
dϕ µj(~p, ~ϕ)π(~ϕ), (19)

but the variance is quite difficult to determine. Needless to say, it is almost certainly not proportional to E[xj ], which
makes the simple model invalid. Furthermore, it would not be enough to calculate the variance once – it will depend on
the parameters ~p – unless one approximates the variance as constant around the maximum likelihood estimate, p̂.

What happens if instead we understand that there is, say, some physical parameter that affects the beam, but which
is not in our model explicitly? This is conceptually tricky, because to arrive at the flexible polynomial model, we
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have already made the assumption that there are no other physical parameters that aren’t being modeled explicitly.
Essentially, the flexible polynomial model is a reparameterization of a theoretically-obtained model. What if one of the
physical parameters were neglected (i.e. assumed to be known when it was uncertain)? Presumably, whatever model
would have been produced by including that parameter is a model that is able to be fit by the polynomial model. So
long as this is the case, then the flexible polynomial model with likelihood given by Eq. 16 is still valid – we are just
not using the full information, so the posterior may be wider than we could achieve with physical parameters. What
changes here is the physical interpretation (if we had made one) of the polynomial coefficients. Using Eq. 16, the
interpretation is that the coefficients are a mapping from the complete set of possible physical parameters (instead of a
limited subset in which some have been marginalised over). Given that this interpretation is unlikely to ever occur, we
can probably be content with the values for the coefficients themselves.

In the case that we were interested in more physical models of the foregrounds and signal that gave detailed predictions
of the beam as a function of position on the sky, Appendix A.2 gives the mean and covariance of the model, if some
parameters (only of the beam at this point) were to be marginalized.

4 Conclusion

In this memo we have examined the ramifications of neglecting the uncertainty of some physical parameters in a
Bayesian analysis of global spectra. We have shown that, as long as the flexible models for the spectra are able to
model the realistic spectra, then a basic Gaussian model with diagonal covariance is valid. This validity is robust to
uncertainties in the physical model, so long as the ability to map from whatever the physical parameters might be to the
flexible parameters is maintained.

What exactly renders a flexible model “able" to model the realistic spectra is not entirely clear. It is clear that not every
flexible model will do – the simple case of a polynomial model illustrates this: adding an extra polynomial coefficient
creates a model which is in general incompatible with its simpler precedent. We showed that determining the effective
likelihood (or even its Gaussianized mean and covariance) which produces the correct posterior, assuming that this
single extra coefficient’s uncertainty has been ignored, is highly non-trivial; it is far better to use the MCMC integration
to determine the posterior directly in each case (perhaps comparing Bayesian evidence to decide whether the increase in
complexity is warranted).

All of this points to ultimately using more physical models, which can be constrained more tightly by physical priors,
and which use the full gamut of time and frequency information at our disposal.

A Derivation of Autocorrelation

A.1 Deterministic sky and beam

Let the electric field for the sky be labelled E and given by

E(θ) ∼ N (0, I(θ, ν, t)). (20)

with the distribution being independent in θ, ν and t. Then the autocorrelation at time t (this is pre-FFT to frequency
domain) is ∫

d2θd2θ′A(θ, ν, t)A†(θ′, ν, t)E(θ, ν, t)E†(θ′, ν, t), (21)

withA the far-field pattern of the antenna and θ the position on the sky. We assume that the distribution of E is stationary
w.r.t t over the timescales of the FFT to frequency.

Given that here A and I are considered deterministic, the expectation is simply

E[V ] =

∫
d2θd2θ′A(θ)A†(θ′) · Cov[E(θ), E†(θ′)]

=

∫
d2θ |A|2Var(E(θ))

=

∫
d2θ A(θ)I(θ) (22)
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The variance is

Var(V ) =

∫
d2θd2θ′d2θ′′d2θ′′′A(θ)A†(θ′)A(θ′′′)A†(θ′′)Cov[EE†′, E ′′′E†′′]

=

∫
d2θd2θ′d2θ′′d2θ′′′A(θ)A†(θ′)A(θ′′′)A†(θ′′)

[
〈EE†′′〉〈E ′′′E†′〉+ 〈EE ′′′〉〈E†′E†′′〉

]
=

∣∣∣∣∫ dθA(θ)I(θ)

∣∣∣∣2 , (23)

where the second equality follows from Isserlis’ theorem, and the final line uses the diagonality of the covariance of
E(θ) and separates integrals.

Note that the resulting distribution of V is not Gaussian (it is strictly positive). Indeed, its variance is large compared to
its mean so it is quite far from Gaussianity. Nevertheless, for a typical visibility, ∼ 106 of these samples are summed
(as part of a Fourier Transform), so that according to the law of large numbers, the result is approximately Gaussian,
with variance

Var(V ) ≈
∣∣∣∣∫ dθA(θ)I(θ)

∣∣∣∣2 /nt. (24)

A.2 Random beam

Let’s now dispense with the assumption that the beam is deterministic, though we will maintain that the beam and sky
are independent (and that the sky intensity is deterministic). Then the expectation is

E[V ] =

∫
d2θd2θ′〈A(θ)A†(θ′)〉Cov[E(θ), E†(θ′)]

=

∫
d2θ 〈A(θ)〉I(θ) (25)

And the variance is

Var(V ) =

∫
d2θd2θ′d2θ′′d2θ′′′Cov[AA†′EE†′,A′′′A†′′E ′′′E†′′]

=

∫
d2θd2θ′d2θ′′d2θ′′′〈AA†′A′′′A†′′〉〈EE†′E ′′′E†′′〉 − 〈AA†′〉〈A′′′A†′′〉〈EE†′〉〈E ′′′E†′′〉

=

∫
d2θd2θ′d2θ′′d2θ′′′〈EE†′〉〈E ′′′E†′′〉

[
〈AA†′A′′′A†′′〉 − 〈AA†′〉〈A′′′A†′′〉

]
+ 〈AA†′A′′′A†′′〉〈EE†′′〉〈E ′′′E†′〉

=

∫
d2θd2θ′Var(E)Var(E ′) [〈A〉〈A′〉+ Cov[A,A′]]

=

∫
d2θd2θ′I(θ)I(θ′) [〈A〉〈A′〉+ Cov[A,A′]] (26)

As expected, if A is deterministic, this reduces to the previous answer. Furthermore, if the beam is independent for
different angles, it reduces to the standard result (with the exception that A is replaced by 〈A〉). Nevertheless, it is not
clear that either of these will be true a priori.

A.3 Random beam and sky

NotImplementedError
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