Antenna Calibration
for BicoLOG 5070 Biconical Antenna

Prepared by Jose Chavez
2013 Apr 07
LoCo Research Group
Tentative Setup

Comb generator → LPF → Amp → bicoLOG

R_{farfield}
Farfield radial distance

\[R_{ff} = \frac{2D^2}{\lambda} \]

- \(D \): maximum dimension of transmitting antenna
- \(\lambda \): operating wavelength of transmitting antenna

\[R_{ff} = 2\lambda \]

- (top) general equation
- (bottom) equation for electrically small antennas, like short dipole and small loops.
R_ff for bicoLOG antenna

\[
R_{ff} = 2\lambda = 2 \left(\frac{c}{f_{\text{min}}} \right) = 2 \cdot \left(\frac{3 \times 10^8 \text{ m}}{50 \text{ MHz}} \right) = 2 \cdot (6 \text{ m}) = 12 \text{ m}
\]

Distance is too large for the lab.

Might be able to use larger frequency (80 MHz), smaller wavelength.

Lab setup was 25’’ (7.62 m)
Radio Link (Friis)

\[P_r = \left(\frac{\lambda}{4\pi R} \right)^2 G_t G_r P_t \]

- \(P_t \): radiated power by transmitting antenna
- \(P_r \): received power by antenna
- \(G_t \): gain of transmitting antenna
- \(G_r \): gain of receiving antenna
- \(\lambda \): transmitting antenna operating wavelength
- \(R \): radial distance from transmitting antenna
If we want receiving antenna to get a -30dBm signal, solve for P_t and set P_r to be 0.001 mW. (Used linear gain, 80MHz)

\[P_t = \frac{(4\pi R)^2}{G_t G_r \lambda} P_r \]

\[P_t = \frac{(4\pi (12 \text{ m}))^2}{(0.0076) (1.5849) (3.75 \text{ m})} (0.001 \text{ mW}) = 133.6 \text{ mW} = 21.26 \text{ dBm} \]

We need approximately a 50 db amplification.
Setup

Comb generator (200 mW) > LPF (SLP-200+) > Amps (ZX60-601E-S+, 16 dB each) > bicoLOG 5070

LPF (6LC-190-S) > Amp > Spectrum Analyzer

R&S HK033
Setup (Transmitting)
Setup (Receiving)
Sweeps

Upright (on)

Power (dBm) vs Frequency (MHz) for the Upright (on) mode.