calibration_analysis

February 12, 2020

1 Calibration For This Observation

This document is a standard calibration notebook meant to show the calibration solutions for this particular observation. It also serves as a standard template for performing similar analyses on any calibration observation.
[1]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import datetime
import os
```

[31]:

```
!echo "Analysis Performed by: $(git config --get user.name)"
print(" on:", datetime.datetime.now())
print(" Directory:", os.path.basename(os.path.dirname(os.getcwd())))
```

Analysis Performed by: Steven Murray
on: 2020-02-11 14:27:37.422756
Directory: Receiver01_2020_01_09_040_to_200MHz

1.0.1 Imports and Setup

[3] :

```
from edges_io import io
from edges_cal import CalibrationObservation
```

[4] :

```
def print_dep_versions(extras=None, ignore=None):
    """
    Prints versions of all important "active" modules.
    This includes modules that are not explicitly imported, as they *may* be
    used as
    deps of used packages. It will skip any module that isn't installed at all
(since
    obviously this is not being used).
    :param extras: Any extra modules that may be useful for this particular.
    ->otebook.
    """
```

```
    from importlib import import_module
    MODULES = [
        "edges_io",
        "edges_cal",
        "read_acq",
        "scipy",
        "numpy",
        "h5py"
    ]
    ignore = ignore or []
    if extras is not None:
        MODULES += extras
    for module in MODULES:
        if module in ignore:
            continue
        try:
            _mdl = import_module(module)
            print("Module {:<11}....\tVersion {:<7}".format(module, _mdl.
\hookrightarrow__version__))
    except ModuleNotFoundError:
            pass
```

Module edges_io	..	Version $0.2 .0 . p o s t 0 . d e v 6+g a b 5 b 32 e$
Module edges_cal	...	Version $0.3 .0 . p o s t 0 . d e v 1+g 5 b 9161 c . d i r t y$
Module read_acq	...	Version $0.3 .1 . \operatorname{dev} 1+g 7 f 2676 e$
Module scipy	...	Version 1.4 .1
Module numpy	...	Version 1.18 .1
Module h5py	...	Version 2.9 .0

1.1 Define the Observation

[15]:

```
calobs = CalibrationObservation(
    path = '../',
    ambient_temp=25,
    f_low = 50.0,
    f_high = 190.0,
    run_num = None, # chooses the "latest" run_num for each source
    repeat_num = None, # chooses the "latest" repeat_num for each source
    resistance_f=49.9859,
```

```
    resistance_m=50.1555,
    ignore_times_percent=10,
    cterms=10,
wterms=12,
cache_dir='derived'
)
```

Checking root folder: /data5/edges/data/CalibrationObservations/Receiver01_2 020_01_09_040_to_200MHz/25C
Checking S11 folder contents at /data5/edges/data/CalibrationObservations/Re ceiver01_2020_01_09_040_to_200MHz/25C/S11
Checking Spectra folder contents at /data5/edges/data/CalibrationObservation s/Receiver01_2020_01_09_040_to_200MHz/25C/Spectra Checking Resistances folder contents at /data5/edges/data/CalibrationObserva
tions/Receiver01_2020_01_09_040_to_200MHz/25C/Resistance
Checking Spectra folder contents at /data5/edges/data/CalibrationObservation
s/Receiver01_2020_01_09_040_to_200MHz/25C/Spectra
Checking Resistances folder contents at /data5/edges/data/CalibrationObserva
tions/Receiver01_2020_01_09_040_to_200MHz/25C/Resistance
Checking S11 folder contents at /data5/edges/data/CalibrationObservations/Re
ceiver01_2020_01_09_040_to_200MHz/25C/S11

1.2 Perform Nominal Calibration

[16]:

```
fig, ax = plt.subplots(4, 1, figsize=(12,12), sharex=True)
calobs.plot_raw_spectra(fig, ax)
fig.tight_layout()
```


Figure $1 \mid$ Uncalibrated (but 3-position-switch corrected) spectra for the four input sources.
[17]: calobs.plot_s11_models();

hot_load Reflection Coefficient Models

Figure $2 \mid S_{11}$ models for each of the input sources, with their residuals.
[18]:

```
calobs.plot_coefficients();
```


Calibration Parameters

Figure 3 | Calibration parameters for this dataset as a function of frequency, gained with the nominal number of C-terms and W-terms, using the iterative fitting procedure.
[19] :

```
calobs.plot_calibrated_temps();
```


Figure $4 \mid$ Calibrated temperature for each of the inputs. Green lines show the known input temperature. The Open and Short fits are unsatisfactory here.

1.3 Sweep of Number of Parameters

Now we try sweeping over the number of parameters to see if we can minimise the RMS.
[14]:

```
rms_per_param = {}
for cterms in range(8, 16):
    for wterms in range(8, 16):
        calobs.update(cterms=cterms, wterms=wterms)
        print(f"Nc = {cterms}, Nw = {wterms}")
        unsmoothed = calobs.get_rms(smooth=0)
        print(f" Smoothed RMS [mK]: {', '.join(f'{name}: {1000*val:.2f}'ь
    ↔for name, val in calobs.get_rms().items())}") # Default smoothed
    Gover four adjacent bins
        print(f" Unsmoothed RMS [mK]: {', '.join(f'{name}: {1000*val:.2f}'ь
    \hookrightarrowfor name, val in unsmoothed.items())}") # Not smoothed
        full_rms = sum(unsmoothed.values())
        rms_per_param[(cterms, wterms)] = full_rms / (2*cterms + 3*wterms)
        print(f" RMS per param: {1000*rms_per_param[(cterms, wterms)]:.2f}
    ->mK")
```

$\mathrm{Nc}=8, \mathrm{Nw}=8$
Smoothed RMS: ambient: 35.01, hot_load: 19.66, open: 956.42, short: 877.00
Unsmoothed RMS: ambient: 131.00, hot_load: 71.43, open: 1456.00, short: 1354.97
$\mathrm{Nc}=8, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.97, hot_load: 19.54, open: 919.18, short: 866.78
Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1431.44, short:
1348.36
$\mathrm{Nc}=8, \mathrm{Nw}=10$
Smoothed RMS: ambient: 34.97, hot_load: 19.54, open: 919.99, short: 866.33
Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1431.93, short:
1348.07
$\mathrm{Nc}=8, \mathrm{Nw}=11$
Smoothed RMS: ambient: 34.97, hot_load: 19.53, open: 895.09, short: 828.31
Unsmoothed RMS: ambient: 130.99, hot_load: 71.39, open: 1416.12, short: 1323.97

Nc = 8, Nw = 12
Smoothed RMS: ambient: 34.96, hot_load: 19.56, open: 860.03, short: 805.61
Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1394.16, short:
1309.91
$\mathrm{Nc}=8, \mathrm{Nw}=13$
Smoothed RMS: ambient: 35.00, hot_load: 19.56, open: 833.61, short: 749.31
Unsmoothed RMS: ambient: 131.00, hot_load: 71.40, open: 1377.43, short:
1276.03
$\mathrm{Nc}=8, \mathrm{Nw}=14$
Smoothed RMS: ambient: 34.98, hot_load: 19.64, open: 775.42, short: 728.15
Unsmoothed RMS: ambient: 130.99, hot_load: 71.42, open: 1342.70, short:

Nc = 8, Nw = 15
Smoothed RMS: ambient: 35.02, hot_load: 19.65, open: 774.26, short: 677.65
Unsmoothed RMS: ambient: 131.00, hot_load: 71.42, open: 1341.88, short:
1235.33
$\mathrm{Nc}=9, \mathrm{Nw}=8$
Smoothed RMS: ambient: 34.91, hot_load: 19.21, open: 957.30, short: 877.48
Unsmoothed RMS: ambient: 130.97, hot_load: 71.31, open: 1456.58, short:
1355.29
$\mathrm{Nc}=9, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.91, hot_load: 19.21, open: 919.22, short: 866.90
Unsmoothed RMS: ambient: 130.97, hot_load: 71.31, open: 1431.46, short:
1348.44
$\mathrm{Nc}=9, \mathrm{Nw}=10$
Smoothed RMS: ambient: 34.91, hot_load: 19.21, open: 919.96, short: 866.40
Unsmoothed RMS: ambient: 130.97, hot_load: 71.31, open: 1431.92, short:
1348.12
$\mathrm{Nc}=9, \mathrm{Nw}=11$
Smoothed RMS: ambient: 34.91, hot_load: 19.21, open: 894.96, short: 828.20
Unsmoothed RMS: ambient: 130.97, hot_load: 71.31, open: 1416.03, short:
1323.90
$\mathrm{Nc}=9, \mathrm{Nw}=12$
Smoothed RMS: ambient: 34.89, hot_load: 19.23, open: 860.02, short: 805.60
Unsmoothed RMS: ambient: 130.97, hot_load: 71.31, open: 1394.16, short:
1309.90
$\mathrm{Nc}=9, \mathrm{Nw}=13$
Smoothed RMS: ambient: 34.95, hot_load: 19.28, open: 833.61, short: 749.31
Unsmoothed RMS: ambient: 130.98, hot_load: 71.33, open: 1377.43, short:
1276.03
$\mathrm{Nc}=9$, $\mathrm{Nw}=14$
Smoothed RMS: ambient: 34.92, hot_load: 19.34, open: 775.42, short: 728.14
Unsmoothed RMS: ambient: 130.97, hot_load: 71.34, open: 1342.71, short:
1263.77
$\mathrm{Nc}=9, \mathrm{Nw}=15$
Smoothed RMS: ambient: 34.99, hot_load: 19.47, open: 774.25, short: 677.65
Unsmoothed RMS: ambient: 130.99, hot_load: 71.37, open: 1341.88, short:
1235.33
$\mathrm{Nc}=10, \mathrm{Nw}=8$
Smoothed RMS: ambient: 34.90, hot_load: 19.17, open: 957.00, short: 877.50
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1456.39, short:
1355.30
$\mathrm{Nc}=10, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.90, hot_load: 19.17, open: 919.12, short: 866.98
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1431.39, short:
1348.49
$\mathrm{Nc}=10, \mathrm{Nw}=10$
Smoothed RMS: ambient: 34.90, hot_load: 19.17, open: 919.75, short: 866.41
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1431.79, short:
1348.13

Nc = 10, Nw = 11
Smoothed RMS:
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1416.03, short:
1323.94
$\mathrm{Nc}=10, \mathrm{Nw}=12$
Smoothed RMS: ambient: 34.89, hot_load: 19.18, open: 860.05, short: 805.67
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1394.17, short:
1309.94
$\mathrm{Nc}=10, \mathrm{Nw}=13$
Smoothed RMS: ambient: 34.95, hot_load: 19.23, open: 833.61, short: 749.30
Unsmoothed RMS: ambient: 130.98, hot_load: 71.31, open: 1377.43, short:
1276.03
$\mathrm{Nc}=10$, $\mathrm{NW}=14$
Smoothed RMS: ambient: 34.91, hot_load: 19.28, open: 775.41, short: 728.14
Unsmoothed RMS: ambient: 130.97, hot_load: 71.32, open: 1342.70, short:
1263.77
$\mathrm{Nc}=10, \mathrm{Nw}=15$
Smoothed RMS: ambient: 34.99, hot_load: 19.41, open: 774.25, short: 677.65
Unsmoothed RMS: ambient: 130.99, hot_load: 71.36, open: 1341.88, short:
1235.33
$\mathrm{Nc}=11$, $\mathrm{Nw}=8$
Smoothed RMS: ambient: 34.91, hot_load: 19.17, open: 956.05, short: 876.88
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1455.77, short:
1354.90
$\mathrm{Nc}=11, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.91, hot_load: 19.17, open: 918.06, short: 866.59
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1430.73, short:
1348.24
$\mathrm{Nc}=11$, $\mathrm{Nw}=10$
Smoothed RMS: ambient: 34.91, hot_load: 19.17, open: 918.67, short: 866.00
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1431.11, short:
1347.86
$\mathrm{Nc}=11$, $\mathrm{Nw}=11$
Smoothed RMS: ambient: 34.91, hot_load: 19.17, open: 894.95, short: 828.33
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1416.02, short:
1323.99
$\mathrm{Nc}=11, \mathrm{Nw}=12$
Smoothed RMS: ambient: 34.89, hot_load: 19.18, open: 860.04, short: 805.66
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1394.17, short: 1309.94

Nc = 11, Nw = 13
Smoothed RMS: ambient: 34.95, hot_load: 19.23, open: 833.56, short: 749.28
Unsmoothed RMS: ambient: 130.98, hot_load: 71.31, open: 1377.40, short:
1276.01
$\mathrm{Nc}=11$, $\mathrm{Nw}=14$
Smoothed RMS: ambient: 34.91, hot_load: 19.28, open: 775.41, short: 728.14
Unsmoothed RMS: ambient: 130.97, hot_load: 71.32, open: 1342.71, short:
1263.77
$\mathrm{Nc}=11$, $\mathrm{Nw}=15$
Smoothed RMS:
Unsmoothed RMS: ambient: 130.99, hot_load: 71.36, open: 1341.88, short:
1235.33
$\mathrm{Nc}=12$, $\mathrm{Nw}=8$
Smoothed RMS: ambient: 34.88, hot_load: 19.18, open: 958.57, short: 874.67
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1457.50, short:
1353.46
$\mathrm{Nc}=12$, $\mathrm{Nw}=9$
Smoothed RMS: ambient: 34.88, hot_load: 19.18, open: 917.36, short: 867.15
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1430.40, short:
1348.59

Nc = 12, Nw = 10
Smoothed RMS:
ambient: 34.88, hot_load: 19.18, open: 917.71, short: 866.48
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1430.62, short:

1348.17

$\mathrm{Nc}=12$, $\mathrm{Nw}=11$
Smoothed RMS: ambient: 34.88, hot_load: 19.18, open: 896.93, short: 828.28
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1417.37, short: 1323.95
$\mathrm{Nc}=12$, $\mathrm{Nw}=12$
Smoothed RMS: ambient: 34.88, hot_load: 19.18, open: 860.35, short: 805.89
Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1394.37, short: 1310.08
$\mathrm{Nc}=12$, $\mathrm{Nw}=13$
Smoothed RMS: ambient: 34.93, hot_load: 19.24, open: 833.42, short: 749.05
Unsmoothed RMS: ambient: 130.98, hot_load: 71.31, open: 1377.32, short: 1275.88
$\mathrm{Nc}=12$, $\mathrm{Nw}=14$
Smoothed RMS: ambient: 34.90, hot_load: 19.27, open: 775.42, short: 727.98
Unsmoothed RMS: ambient: 130.97, hot_load: 71.32, open: 1342.71, short:
1263.68
$\mathrm{Nc}=12$, $\mathrm{Nw}=15$
Smoothed RMS: ambient: 34.97, hot_load: 19.40, open: 774.28, short: 677.66
Unsmoothed RMS: ambient: 130.99, hot_load: 71.36, open: 1341.90, short:
1235.33
$\mathrm{Nc}=13$, $\mathrm{Nw}=8$
Smoothed RMS: ambient: 34.82, hot_load: 19.14, open: 958.39, short: 878.32
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1457.40, short:
1355.83

Nc = 13, Nw = 9
Smoothed RMS: ambient: 34.82, hot_load: 19.14, open: 918.78, short: 869.37
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.31, short:
1350.02
$\mathrm{Nc}=13$, $\mathrm{Nw}=10$
Smoothed RMS: ambient: 34.82, hot_load: 19.14, open: 919.10, short: 868.61
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.52, short:
1349.53
$\mathrm{Nc}=13$, $\mathrm{Nw}=11$
Smoothed RMS:
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1418.17, short:
1325.70
$\mathrm{Nc}=13, \mathrm{Nw}=12$
Smoothed RMS: ambient: 34.82, hot_load: 19.14, open: 863.65, short: 807.86
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1396.46, short:
1311.29
$\mathrm{Nc}=13$, $\mathrm{Nw}=13$
Smoothed RMS: ambient: 34.82, hot_load: 19.13, open: 833.12, short: 749.14
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1377.15, short:
1275.93
$\mathrm{Nc}=13$, $\mathrm{Nw}=14$
Smoothed RMS: ambient: 34.80, hot_load: 19.18, open: 775.47, short: 728.02
Unsmoothed RMS: ambient: 130.95, hot_load: 71.30, open: 1342.74, short:
1263.70
$\mathrm{Nc}=13$, $\mathrm{Nw}=15$
Smoothed RMS: ambient: 34.81, hot_load: 19.22, open: 774.40, short: 677.71
Unsmoothed RMS: ambient: 130.95, hot_load: 71.31, open: 1341.96, short:
1235.36
$\mathrm{Nc}=14$, $\mathrm{Nw}=8$
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 959.98, short: 879.41
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1458.58, short:
1356.53
$\mathrm{Nc}=14, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 918.03, short: 872.61
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.01, short:
1352.11

Nc = 14, Nw = 10
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 918.43, short: 871.73
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.27, short:
1351.54
$\mathrm{Nc}=14, \mathrm{Nw}=11$
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 896.52, short: 835.54
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1417.28, short:
1328.50
$\mathrm{Nc}=14, \mathrm{Nw}=12$
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 861.17, short: 811.66
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1395.06, short:
1313.63

Nc = 14, Nw = 13
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 833.80, short: 752.61
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1377.69, short:
1277.97
$\mathrm{Nc}=14, \mathrm{Nw}=14$
Smoothed RMS: ambient: 34.80, hot_load: 19.13, open: 775.48, short: 728.79
Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1342.74, short:
1264.14
$\mathrm{Nc}=14, \mathrm{Nw}=15$
Smoothed RMS:
Unsmoothed RMS: ambient: 130.95, hot_load: 71.30, open: 1341.78, short:
1235.23
$\mathrm{Nc}=15, \mathrm{Nw}=8$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 959.50, short: 878.88
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1458.27, short:
1356.19
$\mathrm{Nc}=15, \mathrm{Nw}=9$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 917.05, short: 872.49
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1430.40, short:
1352.04
$\mathrm{Nc}=15$, $\mathrm{Nw}=10$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 917.37, short: 871.67
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1430.61, short:
1351.50
$\mathrm{Nc}=15$, $\mathrm{Nw}=11$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 895.52, short: 835.47
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1416.66, short:
1328.46
$\mathrm{Nc}=15$, $\mathrm{NW}=12$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 861.09, short: 810.79
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1395.01, short:
1313.10
$\mathrm{Nc}=15, \mathrm{Nw}=13$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 833.78, short: 750.74
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1377.65, short:
1276.87

Nc $=15$, $\mathrm{Nw}=14$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 774.79, short: 726.58
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1342.34, short:
1262.87
$\mathrm{Nc}=15, \mathrm{Nw}=15$
Smoothed RMS: ambient: 34.80, hot_load: 19.12, open: 774.37, short: 677.25
Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1341.94, short:
1235.11
[]:

```
min_rms = inf
for params, rms in rms_per_param.items():
    if rms < min_rms:
        min_rms = rms
        best_params = params
print("Best set of params: ", best_params)
```


1.4 Model Variance

In this section, we look at the variance of the data from each source as a function of frequency, and compare it to a model based on the known input temperature.

Note: in this case, it does not make sense to do this, as the default fit is too poor.

1.5 MCMC-derived Calibration Fit

In this section, we derive the calibration parameters using MCMC so that we have an estimate of the covariance of the parameters. We can do this using a model for the variance, or the empirical variance.

Note: this should only be done if the initial default fit is reasonable, as it takes a lot longer.

