# calibration\_analysis

February 12, 2020

## 1 Calibration For This Observation

This document is a standard calibration notebook meant to show the calibration solutions for this particular observation. It also serves as a standard template for performing similar analyses on any calibration observation.

```
[1]: %matplotlib inline
import matplotlib.pyplot as plt
import datetime
import os
```

```
[31]: !echo "Analysis Performed by: $(git config --get user.name)"
    print(" on:", datetime.datetime.now())
    print(" Directory:", os.path.basename(os.path.dirname(os.getcwd())))
```

```
Analysis Performed by: Steven Murray
on: 2020-02-11 14:27:37.422756
Directory: Receiver01_2020_01_09_040_to_200MHz
```

```
1.0.1 Imports and Setup
```

```
from importlib import import_module
   MODULES = [
       "edges_io",
       "edges_cal",
       "read_acq",
       "scipy",
       "numpy",
       "h5py"
   ]
   ignore = ignore or []
   if extras is not None:
       MODULES += extras
   for module in MODULES:
       if module in ignore:
           continue
       try:
           _mdl = import_module(module)
           print("Module {:<11}....\tVersion {:<7}".format(module, _mdl.</pre>
→__version__))
       except ModuleNotFoundError:
           pass
```

```
[5]: print_dep_versions()
```

| Module | edges_io  | ••• | Version | 0.2.0.post0.dev6+gab5b32e       |
|--------|-----------|-----|---------|---------------------------------|
| Module | edges_cal |     | Version | 0.3.0.post0.dev1+g5b9161c.dirty |
| Module | read_acq  |     | Version | 0.3.1.dev1+g7f2676e             |
| Module | scipy     |     | Version | 1.4.1                           |
| Module | numpy     |     | Version | 1.18.1                          |
| Module | h5py      |     | Version | 2.9.0                           |

### 1.1 Define the Observation

```
[15]: calobs = CalibrationObservation(
    path = '../',
    ambient_temp=25,
    f_low = 50.0,
    f_high = 190.0,
    run_num = None, # chooses the "latest" run_num for each source
    repeat_num = None, # chooses the "latest" repeat_num for each source
    resistance_f=49.9859,
```

```
resistance_m=50.1555,
ignore_times_percent=10,
cterms=10,
wterms=12,
cache_dir='derived'
)
```

```
Checking root folder: /data5/edges/data/CalibrationObservations/Receiver01_2
020_01_09_040_to_200MHz/25C
Checking S11 folder contents at /data5/edges/data/CalibrationObservations/Re
ceiver01_2020_01_09_040_to_200MHz/25C/S11
Checking Spectra folder contents at /data5/edges/data/CalibrationObservation
s/Receiver01_2020_01_09_040_to_200MHz/25C/Spectra
Checking Resistances folder contents at /data5/edges/data/CalibrationObserva
tions/Receiver01_2020_01_09_040_to_200MHz/25C/Resistance
Checking Spectra folder contents at /data5/edges/data/CalibrationObservation
s/Receiver01_2020_01_09_040_to_200MHz/25C/Spectra
Checking Resistances folder contents at /data5/edges/data/CalibrationObservation
s/Receiver01_2020_01_09_040_to_200MHz/25C/Spectra
Checking Resistances folder contents at /data5/edges/data/CalibrationObserva
tions/Receiver01_2020_01_09_040_to_200MHz/25C/Resistance
Checking S11 folder contents at /data5/edges/data/CalibrationObserva
tions/Receiver01_2020_01_09_040_to_200MHz/25C/Resistance
Checking S11 folder contents at /data5/edges/data/CalibrationObservations/Re
ceiver01_2020_01_09_040_to_200MHz/25C/Resistance
```

#### **1.2** Perform Nominal Calibration

```
[16]: fig, ax = plt.subplots(4, 1, figsize=(12,12), sharex=True)
    calobs.plot_raw_spectra(fig, ax)
    fig.tight_layout()
```



Figure 1 | Uncalibrated (but 3-position-switch corrected) spectra for the four input sources.
[17]: calobs.plot\_s11\_models();



ambient Reflection Coefficient Models





short Reflection Coefficient Models



 $\mathbf{6}$ 

**Figure 2** |  $S_{11}$  models for each of the input sources, with their residuals.

[18]: calobs.plot\_coefficients();



**Calibration Parameters** 

**Figure 3** | Calibration parameters for this dataset as a function of frequency, gained with the nominal number of C-terms and W-terms, using the iterative fitting procedure.

[19]: calobs.plot\_calibrated\_temps();



Calibrated Temperatures for Calibration Sources

**Figure 4** | Calibrated temperature for each of the inputs. Green lines show the known input temperature. The Open and Short fits are unsatisfactory here.

#### **1.3** Sweep of Number of Parameters

Now we try sweeping over the number of parameters to see if we can minimise the RMS.

```
[14]: rms per param = \{\}
      for cterms in range(8, 16):
         for wterms in range(8, 16):
              calobs.update(cterms=cterms, wterms=wterms)
              print(f"Nc = {cterms}, Nw = {wterms}")
              unsmoothed = calobs.get_rms(smooth=0)
             print(f"
                       Smoothed RMS [mK]: {', '.join(f'{name}: {1000*val:.2f}'

→for name, val in calobs.get_rms().items())}")
                                                               # Default smoothed
       →over four adjacent bins
             print(f"
                        Unsmoothed RMS [mK]: {', '.join(f'{name}: {1000*val:.2f}'u
       →for name, val in unsmoothed.items())}") # Not smoothed
              full_rms = sum(unsmoothed.values())
              rms_per_param[(cterms, wterms)] = full_rms / (2*cterms + 3*wterms)
                        RMS per param: {1000*rms_per_param[(cterms, wterms)]:.2f}
              print(f"
       →mK")
```

```
Nc = 8, Nw = 8
                   ambient: 35.01, hot_load: 19.66, open: 956.42, short: 877.00
  Smoothed RMS:
  Unsmoothed RMS: ambient: 131.00, hot_load: 71.43, open: 1456.00, short:
1354.97
Nc = 8, Nw = 9
                   ambient: 34.97, hot_load: 19.54, open: 919.18, short: 866.78
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1431.44, short:
1348.36
Nc = 8, Nw = 10
  Smoothed RMS:
                   ambient: 34.97, hot_load: 19.54, open: 919.99, short: 866.33
  Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1431.93, short:
1348.07
Nc = 8, Nw = 11
  Smoothed RMS:
                   ambient: 34.97, hot_load: 19.53, open: 895.09, short: 828.31
  Unsmoothed RMS: ambient: 130.99, hot_load: 71.39, open: 1416.12, short:
1323.97
Nc = 8, Nw = 12
  Smoothed RMS:
                   ambient: 34.96, hot_load: 19.56, open: 860.03, short: 805.61
  Unsmoothed RMS: ambient: 130.99, hot_load: 71.40, open: 1394.16, short:
1309.91
Nc = 8, Nw = 13
  Smoothed RMS:
                   ambient: 35.00, hot_load: 19.56, open: 833.61, short: 749.31
  Unsmoothed RMS: ambient: 131.00, hot_load: 71.40, open: 1377.43, short:
1276.03
Nc = 8, Nw = 14
  Smoothed RMS:
                   ambient: 34.98, hot_load: 19.64, open: 775.42, short: 728.15
  Unsmoothed RMS: ambient: 130.99, hot_load: 71.42, open: 1342.70, short:
```

1263.77 Nc = 8, Nw = 15Smoothed RMS: ambient: 35.02, hot\_load: 19.65, open: 774.26, short: 677.65 Unsmoothed RMS: ambient: 131.00, hot\_load: 71.42, open: 1341.88, short: 1235.33 Nc = 9, Nw = 8Smoothed RMS: ambient: 34.91, hot load: 19.21, open: 957.30, short: 877.48 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.31, open: 1456.58, short: 1355.29 Nc = 9, Nw = 9ambient: 34.91, hot\_load: 19.21, open: 919.22, short: 866.90 Smoothed RMS: Unsmoothed RMS: ambient: 130.97, hot\_load: 71.31, open: 1431.46, short: 1348.44 Nc = 9, Nw = 10ambient: 34.91, hot\_load: 19.21, open: 919.96, short: 866.40 Smoothed RMS: Unsmoothed RMS: ambient: 130.97, hot\_load: 71.31, open: 1431.92, short: 1348.12 Nc = 9, Nw = 11Smoothed RMS: ambient: 34.91, hot\_load: 19.21, open: 894.96, short: 828.20 Unsmoothed RMS: ambient: 130.97, hot load: 71.31, open: 1416.03, short: 1323.90 Nc = 9, Nw = 12Smoothed RMS: ambient: 34.89, hot\_load: 19.23, open: 860.02, short: 805.60 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.31, open: 1394.16, short: 1309.90 Nc = 9, Nw = 13Smoothed RMS: ambient: 34.95, hot\_load: 19.28, open: 833.61, short: 749.31 Unsmoothed RMS: ambient: 130.98, hot\_load: 71.33, open: 1377.43, short: 1276.03 Nc = 9, Nw = 14Smoothed RMS: ambient: 34.92, hot\_load: 19.34, open: 775.42, short: 728.14 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.34, open: 1342.71, short: 1263.77 Nc = 9, Nw = 15Smoothed RMS: ambient: 34.99, hot load: 19.47, open: 774.25, short: 677.65 Unsmoothed RMS: ambient: 130.99, hot\_load: 71.37, open: 1341.88, short: 1235.33 Nc = 10, Nw = 8ambient: 34.90, hot\_load: 19.17, open: 957.00, short: 877.50 Smoothed RMS: Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1456.39, short: 1355.30 Nc = 10, Nw = 9Smoothed RMS: ambient: 34.90, hot\_load: 19.17, open: 919.12, short: 866.98 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1431.39, short: 1348.49 Nc = 10, Nw = 10Smoothed RMS: ambient: 34.90, hot\_load: 19.17, open: 919.75, short: 866.41 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1431.79, short:

```
1348.13
Nc = 10, Nw = 11
                   ambient: 34.91, hot_load: 19.17, open: 894.96, short: 828.26
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1416.03, short:
1323.94
Nc = 10, Nw = 12
  Smoothed RMS:
                   ambient: 34.89, hot load: 19.18, open: 860.05, short: 805.67
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1394.17, short:
1309.94
Nc = 10, Nw = 13
                   ambient: 34.95, hot_load: 19.23, open: 833.61, short: 749.30
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.98, hot_load: 71.31, open: 1377.43, short:
1276.03
Nc = 10, Nw = 14
                   ambient: 34.91, hot_load: 19.28, open: 775.41, short: 728.14
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.32, open: 1342.70, short:
1263.77
Nc = 10, Nw = 15
  Smoothed RMS:
                   ambient: 34.99, hot_load: 19.41, open: 774.25, short: 677.65
  Unsmoothed RMS: ambient: 130.99, hot load: 71.36, open: 1341.88, short:
1235.33
Nc = 11, Nw = 8
  Smoothed RMS:
                   ambient: 34.91, hot_load: 19.17, open: 956.05, short: 876.88
  Unsmoothed RMS: ambient: 130.97, hot load: 71.30, open: 1455.77, short:
1354.90
Nc = 11, Nw = 9
                   ambient: 34.91, hot_load: 19.17, open: 918.06, short: 866.59
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1430.73, short:
1348.24
Nc = 11, Nw = 10
  Smoothed RMS:
                   ambient: 34.91, hot_load: 19.17, open: 918.67, short: 866.00
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1431.11, short:
1347.86
Nc = 11, Nw = 11
                   ambient: 34.91, hot load: 19.17, open: 894.95, short: 828.33
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1416.02, short:
1323.99
Nc = 11, Nw = 12
  Smoothed RMS:
                   ambient: 34.89, hot_load: 19.18, open: 860.04, short: 805.66
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.30, open: 1394.17, short:
1309.94
Nc = 11, Nw = 13
  Smoothed RMS:
                   ambient: 34.95, hot_load: 19.23, open: 833.56, short: 749.28
  Unsmoothed RMS: ambient: 130.98, hot_load: 71.31, open: 1377.40, short:
1276.01
Nc = 11, Nw = 14
   Smoothed RMS:
                   ambient: 34.91, hot_load: 19.28, open: 775.41, short: 728.14
  Unsmoothed RMS: ambient: 130.97, hot_load: 71.32, open: 1342.71, short:
```

1263.77 Nc = 11, Nw = 15ambient: 34.98, hot\_load: 19.40, open: 774.25, short: 677.65 Smoothed RMS: Unsmoothed RMS: ambient: 130.99, hot\_load: 71.36, open: 1341.88, short: 1235.33 Nc = 12, Nw = 8Smoothed RMS: ambient: 34.88, hot load: 19.18, open: 958.57, short: 874.67 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1457.50, short: 1353.46 Nc = 12, Nw = 9ambient: 34.88, hot\_load: 19.18, open: 917.36, short: 867.15 Smoothed RMS: Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1430.40, short: 1348.59 Nc = 12, Nw = 10ambient: 34.88, hot\_load: 19.18, open: 917.71, short: 866.48 Smoothed RMS: Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1430.62, short: 1348.17 Nc = 12, Nw = 11Smoothed RMS: ambient: 34.88, hot\_load: 19.18, open: 896.93, short: 828.28 Unsmoothed RMS: ambient: 130.97, hot load: 71.30, open: 1417.37, short: 1323.95 Nc = 12, Nw = 12Smoothed RMS: ambient: 34.88, hot\_load: 19.18, open: 860.35, short: 805.89 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.30, open: 1394.37, short: 1310.08 Nc = 12, Nw = 13ambient: 34.93, hot\_load: 19.24, open: 833.42, short: 749.05 Smoothed RMS: Unsmoothed RMS: ambient: 130.98, hot\_load: 71.31, open: 1377.32, short: 1275.88 Nc = 12, Nw = 14Smoothed RMS: ambient: 34.90, hot\_load: 19.27, open: 775.42, short: 727.98 Unsmoothed RMS: ambient: 130.97, hot\_load: 71.32, open: 1342.71, short: 1263.68 Nc = 12, Nw = 15ambient: 34.97, hot load: 19.40, open: 774.28, short: 677.66 Smoothed RMS: Unsmoothed RMS: ambient: 130.99, hot\_load: 71.36, open: 1341.90, short: 1235.33 Nc = 13, Nw = 8ambient: 34.82, hot\_load: 19.14, open: 958.39, short: 878.32 Smoothed RMS: Unsmoothed RMS: ambient: 130.95, hot\_load: 71.29, open: 1457.40, short: 1355.83 Nc = 13, Nw = 9Smoothed RMS: ambient: 34.82, hot\_load: 19.14, open: 918.78, short: 869.37 Unsmoothed RMS: ambient: 130.95, hot\_load: 71.29, open: 1431.31, short: 1350.02 Nc = 13, Nw = 10Smoothed RMS: ambient: 34.82, hot\_load: 19.14, open: 919.10, short: 868.61 Unsmoothed RMS: ambient: 130.95, hot\_load: 71.29, open: 1431.52, short:

```
1349.53
Nc = 13, Nw = 11
  Smoothed RMS:
                   ambient: 34.82, hot_load: 19.14, open: 898.13, short: 831.07
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1418.17, short:
1325.70
Nc = 13, Nw = 12
  Smoothed RMS:
                   ambient: 34.82, hot load: 19.14, open: 863.65, short: 807.86
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1396.46, short:
1311.29
Nc = 13, Nw = 13
                   ambient: 34.82, hot_load: 19.13, open: 833.12, short: 749.14
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1377.15, short:
1275.93
Nc = 13, Nw = 14
                   ambient: 34.80, hot_load: 19.18, open: 775.47, short: 728.02
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.30, open: 1342.74, short:
1263.70
Nc = 13, Nw = 15
  Smoothed RMS:
                   ambient: 34.81, hot_load: 19.22, open: 774.40, short: 677.71
  Unsmoothed RMS: ambient: 130.95, hot load: 71.31, open: 1341.96, short:
1235.36
Nc = 14, Nw = 8
  Smoothed RMS:
                   ambient: 34.80, hot_load: 19.13, open: 959.98, short: 879.41
  Unsmoothed RMS: ambient: 130.95, hot load: 71.29, open: 1458.58, short:
1356.53
Nc = 14, Nw = 9
                   ambient: 34.80, hot_load: 19.13, open: 918.03, short: 872.61
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.01, short:
1352.11
Nc = 14, Nw = 10
  Smoothed RMS:
                   ambient: 34.80, hot_load: 19.13, open: 918.43, short: 871.73
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1431.27, short:
1351.54
Nc = 14, Nw = 11
                   ambient: 34.80, hot load: 19.13, open: 896.52, short: 835.54
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1417.28, short:
1328.50
Nc = 14, Nw = 12
  Smoothed RMS:
                   ambient: 34.80, hot_load: 19.13, open: 861.17, short: 811.66
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1395.06, short:
1313.63
Nc = 14, Nw = 13
  Smoothed RMS:
                   ambient: 34.80, hot_load: 19.13, open: 833.80, short: 752.61
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1377.69, short:
1277.97
Nc = 14, Nw = 14
                   ambient: 34.80, hot_load: 19.13, open: 775.48, short: 728.79
  Smoothed RMS:
  Unsmoothed RMS: ambient: 130.95, hot_load: 71.29, open: 1342.74, short:
```

```
1264.14
    Nc = 14, Nw = 15
                       ambient: 34.81, hot_load: 19.19, open: 774.08, short: 677.47
       Smoothed RMS:
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.30, open: 1341.78, short:
    1235.23
    Nc = 15, Nw = 8
       Smoothed RMS:
                       ambient: 34.80, hot load: 19.12, open: 959.50, short: 878.88
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1458.27, short:
    1356.19
    Nc = 15, Nw = 9
                       ambient: 34.80, hot_load: 19.12, open: 917.05, short: 872.49
       Smoothed RMS:
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1430.40, short:
    1352.04
    Nc = 15, Nw = 10
                       ambient: 34.80, hot_load: 19.12, open: 917.37, short: 871.67
       Smoothed RMS:
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1430.61, short:
    1351.50
    Nc = 15, Nw = 11
       Smoothed RMS:
                       ambient: 34.80, hot_load: 19.12, open: 895.52, short: 835.47
       Unsmoothed RMS: ambient: 130.95, hot load: 71.28, open: 1416.66, short:
    1328.46
    Nc = 15, Nw = 12
       Smoothed RMS:
                       ambient: 34.80, hot_load: 19.12, open: 861.09, short: 810.79
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1395.01, short:
    1313.10
    Nc = 15, Nw = 13
                       ambient: 34.80, hot_load: 19.12, open: 833.78, short: 750.74
       Smoothed RMS:
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1377.65, short:
    1276.87
    Nc = 15, Nw = 14
                       ambient: 34.80, hot_load: 19.12, open: 774.79, short: 726.58
       Smoothed RMS:
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1342.34, short:
    1262.87
    Nc = 15, Nw = 15
       Smoothed RMS:
                       ambient: 34.80, hot load: 19.12, open: 774.37, short: 677.25
       Unsmoothed RMS: ambient: 130.95, hot_load: 71.28, open: 1341.94, short:
    1235.11
[]: min_rms = inf
```

```
for params, rms in rms_per_param.items():
    if rms < min_rms:
        min_rms = rms
        best_params = params
print("Best set of params: ", best_params)</pre>
```

### 1.4 Model Variance

In this section, we look at the variance of the data from each source as a function of frequency, and compare it to a model based on the known input temperature.

Note: in this case, it does not make sense to do this, as the default fit is too poor.

## 1.5 MCMC-derived Calibration Fit

In this section, we derive the calibration parameters using MCMC so that we have an estimate of the covariance of the parameters. We can do this using a *model* for the variance, or the empirical variance.

Note: this should only be done if the initial default fit is reasonable, as it takes a lot longer.