
compare-alanmode-output

August 8, 2024

1 Compare AlanMode to C code

This memo notebook summarizes the results of careful matching of the EDGES-3 calibration with
edges-cal to the output of Alan’s C-code. The main result of this memo is that edges-cal can
now match the C-code to better than 10−6 precision in the calibration parameters (𝐶1, 𝐶2,
𝑇𝑢𝑛𝑐, 𝑇𝑐𝑜𝑠 and 𝑇𝑠𝑖𝑛).

1.1 The Data

The data for this comparison are:

• Calibration load S11s measured on 2022_319_14,
• and Spectra measured on 2022_316,

which are calibration observations chosen by Alan to calibrate observations on days 2022:300-310.

1.2 The C-Code

The C-code used to produce Alan’s results here was originally provided by Alan directly via email.
Though several .c files are in the overall package, only some of these are used in the calibration
here:

• reads1p1.c – for reading raw VNA output, performing calibration, and writing back out at
raw frequency resolution

• acqplot7amoon.c – for reading spectra (ACQ files), averaging them over time, and writing
out the smoothed, averaged, uncalibrated temperatures, 𝑇 ∗

𝑠𝑟𝑐.
• edges3c.c – for reading the calibrated S11’s, modelling them with smooth functions and

evaluating them on the finer frequency resolution of the spectra, then doing the iterative
calibration routine to find the calibration parameters.

• docal_316test – a C-shell script that puts all of those operations together to do the calibra-
tion.

Some modifications were made to the code that was directly provided. In almost all cases, these
were simply to add outputs at various stages of the processing to make it easier to perform the
comparison. We summarize these changes here:

• In reads1p1.c the output format of the S11 .csv files was modified simply to increase the
precision: all values were changed from %f to %1.16e. Since very small differences in the raw
S11 values can affect their subsequent modelling, this was found necessary in order to properly

1

compare the final results, since in edges-cal, the output values from the step equivalent to
reads1p1 are passed in-memory to the modelling step, which means they were much higher
precision than the %f format would allow for the C-code.

• In acqplot7amoon.c a new file output was added: the flagfile.txt which simply tracks
which integrations are flagged. In the case of this calibration, no integrations are flagged, so
this is somewhat unnecessary (but it was used to make this check).

• In edges3c.c:
– We added the s11_modelled.txt output, which simply writes all the calibration load

S11’s (plus the LNA) after modelling, at the resolution of the spectra. These are written
out with format %1.12e in order to get good precision for their comparison.

– Added a similar ant_s11_modelled.txt output.
– Modified the output precision of the specal.txt to be %1.12e. This was not because

we think we need that precision for calibration, but because it aids in comparison here.
– The value of PI defined in the code was updated to add 5 more digits of precision. This

was done since the S11 models use PI in their basis functions, and small differences here
can propagate to larger differences down the line. We show the effect of this change in
this memo. XXXXX.

– Fixed a small bug in the fittp() function, in which the lowest frequency that con-
tributes to the fit was being taken as the second lowest un-flagged datum, rather than
the lowest. We note that all previous results from Alan’s code will have this bug present
in them, and we talk about this further in this memo.

The full code actually used in this comparison is available on github at https://github.com/edges-
collab/edges3-day300-310-test.

1.3 The Python Code

In this comparison we use the new alancal CLI command in the edges-cal package. In particular
we use the 6.2.6.dev166+ge2c5fbb version of edges-cal. After showing that the basic function
compares well to the C-code, we will also discuss some of the changes that were required to get
there, and show comparisons with and without these changes. For these, some ad-hoc changes were
required to the code, but these will be discussed explicitly.

The basic command we used for this comparison is:

edges-cal alancal 2022_319_14 2022 316 \
-res 49.8 -ps 33 -cablen 4.26 -cabloss -91.5 -cabdiel -1.24 \
-fstart 48 -fstop 198 -smooth 8 -tload 300 -tcal 1000 -Lh -1 \
-wfstart 50.0 -wfstop 190.0 -tcold 306.5 -thot 393.22 -tcab 306.5 \
-cfit 7 -wfit 7 -nfit3 10 -nfit2 27 \
--redo-s11 --redo-cal --no-plot

1.4 Comparison of Outputs from the C-code with Fixes

Before we continue, we discuss the two fixes made to the C-code, and the impact they make. Both
of these fixes were made to the edges3c.c module. One of them (the fittp fix) exclusively affects
modelling, which in the case of calibration, only affects the modelled S11s. The increase of precision

2

in PI affects several components of edges3c.c, but only to a low level, and probably the S11’s most
of all.

More explicitly, the fittp() function in edges3.c performs the model-fitting for the S11’s (for
all four loads and the LNA). Prior to actually fitting the data, the function determines the first
and last frequency bin to use in the fit – taking into account the weights (which are primarily
determined by the arguments -wfstart and wfstop). There was a small bug in which the second
bin was used as the lowest bin instead of the first. All plots below labeled “With fittp() fix”
have this fixed in the C-code. All runs with edges-cal throughout the memo have the correct
behaviour.

[63]: import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path

[2]: from edges_cal.alanmode import read_s11_csv, read_spec_txt, read_specal

[16]: loads = ['amb', 'hot', 'open', 'short']

[12]: def read_s11m(pth):
_s11m = np.genfromtxt(pth, comments="#", names=True)
s11m = {}
for load in loads + ['lna']:

s11m[load] = _s11m[f"{load}_real"] + 1j*_s11m[f"{load}_imag"]
s11m['freq'] = _s11m['freq']
return s11m

First, let’s have a look at the differences made to the S11 models themselves. We ran edges3c for
all four combinations of the fixes, and saved the outputs.

[13]: s11m_cases = {
'With fittp() fix; default PI': read_s11m('alans-code/

↪with_fittp_fix_no_pi_fix/s11_modelled.txt'),
'With fittp() fix; hi-prec PI': read_s11m('alans-code/

↪with_fittp_fix_and_pi_fix/s11_modelled.txt'),
'No fittp() fix; default PI': read_s11m('alans-code/no_fittp_fix_no_pi_fix/

↪s11_modelled.txt'),
'No fittp() fix; hi-prec PI': read_s11m('alans-code/

↪no_fittp_fix_with_pi_fix/s11_modelled.txt')
}

[66]: default_case = s11m_cases['No fittp() fix; default PI']

fig, ax = plt.subplots(len(loads) + 1, 1, sharex=True, constrained_layout=True,␣
↪figsize=(12, 10))

for j, (case, s11) in enumerate(s11m_cases.items()):
if case == 'No fittp() fix; default PI':

3

continue

for i, load in enumerate(loads + ['lna']):
ax[i].plot(s11['freq'], np.abs(s11[load] - default_case[load]),␣

↪label=case, ls=['-', '--', ':', '-.'][j])
ax[i].set_title(load)
ax[i].set_yscale('log')
ax[i].set_ylabel(r"$|S_{11} - S_{11}^{\rm original}|$")

ax[0].legend(ncols=4);

ax[-1].set_xlabel("Frequency [MHz]");
fig.suptitle("Comparison of S11 between changes to Alan's Code")

[66]: Text(0.5, 0.98, "Comparison of S11 between changes to Alan's Code")

Figure 1 | Comparison of calibrated S11’s from Alan’s pipeline after smoothing with a linear
model. Each panel represents a different input source, including the LNA. Four cases were run:
with and without the fix to fittp() (see text), and with and without an increase in precision of

4

PI. The values shown are the absolute differences of the 𝑆11 in each case compared to the original
code, i.e. without the fix to fittp() and with the original precision of PI. The figure indicates that
the change to PI (blue and orange lines) is much less significant than the change to fittp() (green
line). The files were written with the format %1.12e and therefore ‘spiky’ changes in the green line
for the LNA (bottom panel) are simply precision error on top of the inherent (very small) error.

From this, we see that making the fittp() fix is reasonably important – it has an effect at the
∼ 10−7 level for the source S11s. The increase in precision of PI is not very important. To confirm
this, let us look at the final calibration solutions.

[79]: specal_cases = {
'With fittp() fix; default PI': read_specal('alans-code/

↪with_fittp_fix_no_pi_fix/specal_316test.txt'),
'With fittp() fix; hi-prec PI': read_specal('alans-code/

↪with_fittp_fix_and_pi_fix/specal_316test.txt'),
'No fittp() fix; default PI': read_specal('alans-code/

↪no_fittp_fix_no_pi_fix/specal_316test.txt'),
'No fittp() fix; hi-prec PI': read_specal('alans-code/

↪no_fittp_fix_with_pi_fix/specal_316test.txt')
}

[82]: def plot_calcoeff_cases(cases, comp_case, fig=None, ax=None):
if fig is None:

fig, ax = plt.subplots(len(comp_case.dtype.names)-4, 1, sharex=True,␣
↪constrained_layout=True, figsize=(12, 15))

for ic, (case, cal) in enumerate(cases.items()):
j = 0

for i, name in enumerate(comp_case.dtype.names):
if name in ('freq', 'weight') or name.startswith("s11lna"):

continue
ax[j].plot(comp_case['freq'], comp_case[name] - cal[name],␣

↪label=case, ls=(ic, (5, 4)))
ax[j].set_title(name)
ax[j].set_yscale('symlog', linthresh=1e-6)
ax[j].set_ylabel(f"Diff. w.r.t original" + ("[K]" if name.

↪startswith("T") else ""))

j += 1

ax[0].legend()
ax[-1].set_xlabel("Frequency [MHz]")
fig.suptitle("Comparison of Receiver Calibration Coefficients between␣

↪C-Code changes")
return fig, ax

5

[83]: plot_calcoeff_cases({k: v for k,v in specal_cases.items() if k!='No fittp() fix;
↪ default PI'}, specal_cases['No fittp() fix; default PI']);

Figure 2 | Comparison of calibration coefficients produced by the C-code between the changes in
the C-code we tested in this memo. See Fig. 1 for details on the changes, and note that the colors
in this plot are the same as Fig 1. Note that fixing fittp() has a relatively larger effect overall,

6

but none of the changes makes a very big impact.

Here, we see that actually neither of the changes will have a very large impact – the scaling, 𝐶1
stays the same to less than 10−8, and while the fittp fix does change the noise wave parameters
to a much larger level (∼ 10−4), these are additive and therefore unlikely to be of much effect in
the final results.

Nevertheless, it is good to keep these things in mind for the rest of the analysis. For the rest,
we will use the version with the fittp fix (since we cannot and should not emulate this with the
edges-cal package) and without the PI enhancement (since this is not a big effect, and is unlikely
to be updated in future C-code versions).

1.5 Demonstration of Matching Calibration

Now we show that edges-cal and the C-code match to very good precision, when the parameters
are chosen accordingly. This comparison uses the above call to edges-cal alancal precisely.

1.5.1 Calibrated (unmodelled) S11s

[94]: alans11 = {}
ours11 = {}
for load in loads + ['lna']:

s11freq, alans11[load] = read_s11_csv(f"alans-code/s11{load}.csv")
_, ours11[load] = read_s11_csv(f"alanmode/s11{load}.csv")

[95]: fig, ax = plt.subplots(len(alans11), 1, sharex=True, constrained_layout=True,␣
↪figsize=(12, 10))

for i, load in enumerate(alans11):
ax[i].plot(s11freq, (alans11[load].real - ours11[load].real)/np.

↪abs(alans11[load]), label='real')
ax[i].plot(s11freq, (alans11[load].imag - ours11[load].imag)/np.

↪abs(alans11[load]), label='imag')
ax[i].plot(s11freq, np.abs(alans11[load] - ours11[load])/np.

↪abs(alans11[load]), label='abs')
ax[i].set_title(load)
ax[i].set_ylabel("Difference/|S11 Alan|")

ax[0].legend(ncols=3)
ax[-1].set_xlabel("Frequency [MHz]")

fig.suptitle("Calibrated (unmodelled) S11 differences");

7

Figure 3 | Comparison of calibrated 𝑆11 for different loads, at raw frequency resolution. These
𝑆11’s have been calibrated via OSL standards, but they have not been smoothed. The comparison is
between the calibration done in edges-cal vs. the C-code (using reads1p.c). The values plotted
are the fractional differences, as compared to the absolute value of the 𝑆11 calibrated with the
C-code. While the fractional residuals are small, they are not consistent with precision error in the
output files, which is at the level of 10−16. This may be because of differing values of constants such
as the speed of light in the calibration codes. It is also unclear why the residuals have “step-like”
behaviours.

1.5.2 Averaged Spectra

[34]: alanspec = {}
ourspec = {}
for load in loads:

data = read_spec_txt(f"alans-code/sp{load}.txt")
spfreq = data['freq']
alanspec[load] = data['spectra']

8

data = read_spec_txt(f"alanmode/sp{load}.txt")
ourspec[load] = data['spectra']
assert np.allclose(spfreq, data['freq'])

[97]: !head alans-code/spamb.txt

48.004150 299.973456 1 450 // temp.acq 2022:316:08:59:25 11.205 24.000
12.674 14.143 11.205 fmpwr 0.000

48.052979 299.869072 1
48.101807 299.745895 1
48.150635 299.712125 1
48.199463 299.803907 1
48.248291 299.831184 1
48.297119 299.893957 1
48.345947 299.810161 1
48.394775 299.896787 1
48.443604 299.956277 1

[96]: fig, ax = plt.subplots(len(alanspec), 1, sharex=True, constrained_layout=True,␣
↪figsize=(12, 10))

for i, load in enumerate(alanspec):
ax[i].plot(spfreq[10:-10], alanspec[load][10:-10] - ourspec[load][10:-10])
ax[i].set_title(load)
ax[i].set_ylabel("Difference [K]")

fig.suptitle("Raw spectra differences")
ax[-1].set_xlabel("Frequency [MHz]");

9

Figure 4 | Comparison of averaged spectra between the edges-cal and the C-code. Each panel
is a different input source. The difference is exactly zero to the precision of the output files (which
is 10−6 K). Note that since these files are written out and then read back in at the next stage of
processing, any potential differences between the codes below this level are removed here.

1.5.3 Modelled S11s

[41]: ours11m = read_s11m("alanmode/correct/s11_modelled.txt")

[101]: default_case = ours11m

fig, ax = plt.subplots(len(loads) + 1, 1, sharex=True, constrained_layout=True,␣
↪figsize=(12, 10))

for j, (case, s11) in enumerate(s11m_cases.items()):
for i, load in enumerate(loads + ['lna']):

10

ax[i].plot(s11['freq'], np.abs(s11[load] - default_case[load])/np.
↪abs(default_case[load]), label=case, ls=['-', '--'][j%2])

ax[i].set_title(load)
ax[i].set_yscale('log')
ax[i].set_ylabel("| Diff | / |S11 edges-cal|")

ax[0].legend(ncols=4)
ax[-1].set_xlabel("Frequency [MHz]")
fig.suptitle("Absolute Difference in edges-cal Modelled S11 versus C-code")

[101]: Text(0.5, 0.98, 'Absolute Difference in edges-cal Modelled S11 versus C-code')

Figure 5 | Comparison of 𝑆11 for each input source (and receiver) after linear modelling. Each
color represents a different modification to the C-code (described above). All cases are compared to
edges-cal which has high-precision PI and corresponds to fittp() being corrected (i.e. we expect
it to be closest to the orange line). It is indeed closest to the orange and blue, for which it has an
accuracy of about 1 part in 109.

11

1.5.4 Calibration Coefficients

[105]: ourcal = read_specal("alanmode/correct/specal.txt")

[107]: plot_calcoeff_cases(specal_cases, ourcal);

12

Figure 6 | The same as Fig 2 except that here the comparison calibration is done with edges-cal
and the different colors are the different C-code cases. We expect the orange to be closest to
edges-cal, and we find that to be true. All coefficients are very close to the C-code in all cases,
however 𝐶1 is the most important, as it is multiplicative in the final calibration – it is accurate to
better than 10−6.

1.6 Noise-Wave Calibration Loop Improvements

In the process of this careful comparison, several updates were made to the calibration loop in which
the scale, offset and noise-wave parameters are determined within edges-cal. In particular, these
were (labels of following plots precede the description):

• lstsq fit: Changing the default lstsq matrix-inverse solving method used to solve for the
linear parameters to a custom-writting method _alan_qrd, which is a port of the C function
in Alan’s code.

• hot load loss on temp: Changing the hot-load loss from being applied to the thermistor
temperature, to instead be applied to the spectrum (in reverse).

• no delay subtraction: Adding a substraction of a fitted delay to the noise-wave correlated
data.

• 4 iterations (not 8): Using 8 iterations instead of the default 4.
• smooth sca/off in loop: Switching from modelling and smoothing 𝐶1 and 𝐶2 within the

calibration loop to instead only modelling them at the end of the loop.
• standard poly: Switching from using a polynomial with integer-order terms, to half-integer

order terms for 𝐶1 and 𝐶2.

In particular, for the standard poly case, we were using the polynomial

𝐶 = ∑
𝑖

𝑎𝑖 (𝜈
𝜈𝑐

)
𝑖
,

but have switched, in line with the C-code, to

𝐶 = ∑
𝑖

𝑎𝑖 (𝜈
𝜈𝑐

)
𝑖/2

.

We show the effect of each of these changes in this section. Since we are focusing on the changes
arising from these aspects of the calibration loop, rather than the S11 modelling (which feeds into
that loop), here we show results of injecting the exact S11 from the C-code into edges-cal to
perform the calibration loop, showing the difference with respect to the results from the loop in
the C-code.

Note that we performed this injection with the version of the C-code without the fittp fix and PI
fix, nevertheless these differences remain qualitatively the same.

[108]: cases = {
"lstsq fit": 'default-fitmethod',
"hot load loss on temp": 'loss-on-temp',
"no delay subtraction": "nodelay",

13

"4 iterations (not 8)": 'nter4',
"smooth sca/off in loop": "smooth-in-loop",
"standard poly": "wrong-poly",

}

allspec = {case: read_specal(f"alanmode/{fld}/specal.txt") for case, fld in␣
↪cases.items()}

[111]: fig, ax = plot_calcoeff_cases(allspec, specal_cases["With fittp() fix; hi-prec␣
↪PI"])

plot_calcoeff_cases({"correct": ourcal}, specal_cases["With fittp() fix;␣
↪hi-prec PI"], fig=fig, ax=ax);

14

Figure 7 | Comparison of calibration coefficients from different iterations of edges-cal with that
from the C-code. Different colors represent calibrations performed with edges-cal with various
slight differences from the C-code (see above for details). The case they are compared to is the
C-code with the fix to fittp() and high-precision 𝜋.

The key takeaways from this plot are:

15

1. The biggest differences to the NW params are from not subtractiving a delay, and secondarily
from smoothing the scale/offset within the loop.

2. The biggest difference to the scale (C1) is fitting with a different polynomial.
3. This is the same for the offset (C2), except that also the smoothing inside the loop and delay

subtraction play a notable role.
4. Three modifications have almost no effect:

1. the number of iterations (4 instead of 8)
2. the method of fitting (lstsq instead of alan-qrd)
3. using the loss on the temperature instead of the spectrum

16

	Compare AlanMode to C code
	The Data
	The C-Code
	The Python Code
	Comparison of Outputs from the C-code with Fixes
	Demonstration of Matching Calibration
	Calibrated (unmodelled) S11s
	Averaged Spectra
	Modelled S11s
	Calibration Coefficients

	Noise-Wave Calibration Loop Improvements

