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1 Introduction

The calibration of the sky temperature, Tiyy, is a crucial step in the analysis of radio astronomical data. The
process involves reading calibration data files, fitting S-parameters, and using these fits to calculate Ty .

2 Theory of Delay Calculation

In the calibration and fitting of the S1; parameter, it is often necessary to account for delays introduced in the
measurement setup. This section outlines the theory behind calculating the optimal delay to align the phase of
the measured Sq; data.

2.1  Weighted Sum of S,

Given:

Si1,;: The S11 parameter measured at the i-th frequency.

w;: The weight associated with the i-th frequency (now the weight is an array of ones, i.e., no weight).
fit The i-th frequency.

7: The delay being tested.

n: The total number of frequency points.

The weighted sum with a delay 7 is calculated as:

n—1
Sum(r) = Z w; Sy €327 (1)
i=0

2.2  Finding the Optimal Delay

The goal is to find the delay 7 that maximizes the magnitude of this weighted sum:

max [Sum(7)] (2)

To achieve this, the algorithm iterates over a range of potential delays and calculates the weighted sum for
each delay. The delay that results in the maximum magnitude of the weighted sum is chosen as the optimal
delay.
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2.3 Mathematical Steps

1. Initialize Parameters: Set the initial maximum value to a very low number and initialize the best delay.
max_val = —1 x 10%° (3)

best_delay = 0 (4)
2. Iterate Over Delays: For each potential delay 7, calculate the weighted sum:

n—1
sume = g wi5117i632”f” (5)
i=0

3. Evaluate Magnitude: Compute the magnitude of the sum:
magnitude = [sumc| (6)

4. Update Optimal Delay: If the magnitude is greater than the current maximum value, update the maximum
value and best delay:

if magnitude > max_val (7)
then max_val = magnitude (8)
best_delay = 7 (9)

2.4 Importance of Delay Calculation

Accurate delay calculation ensures that the phase shifts introduced by delays in the measurement setup are
properly accounted for. This alignment is crucial for the accurate representation and analysis of the Si;
parameter, leading to more reliable calibration and fitting results.

3 Basis Function Generation

The function generate_basis_functions generates the basis functions used for polynomial fitting. These basis
functions form the design matrix for the fitting process. The choice of basis functions depends on the value of
nfit. Let’s go through the function and explain the equations used for each case.

3.1 Function Definition

def generate_basis_functions(freqq2, np_data, nfit, fO0, dfreq, fcen):
fitf = np.zeros((np_data * nfit))
for j in range(nfit):
for i in range(np_data):
if nfit > 16:
if § ==
fitf[i + j * np_data]
elif j % 2:
fitf[i + j * np_datal
else:
fitf[i + j * np_data]

]
-

np.cos((freqq2[i] - f0) * 2.0 * np.pi * (j // 2 + 1) / dfr

np.sin((freqq2[i] - £f0) * 2.0 * np.pi * (j // 2) / dfreq)
else:
fitf[i + j * np_datal = np.loglO(freqq2[i] / fcen) *x* j
return fitf

3.2 Explanation
3.2.1 Parameters

freqq2: The frequency values.

np_data: The number of data points.

nfit: The number of basis functions (polynomial terms).

£0: The reference frequency (typically the starting frequency).

dfreq: The frequency range (difference between the maximum and minimum frequency).
fcen: The center frequency (average of the maximum and minimum frequency).
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3.2.2 Basis Function Generation

Initialization:

fitf = np.zeros((np_-data * nfit))

This initializes an array fitf of zeros with size np_data x nfit to store the basis functions.

Loop Over Polynomial Terms:

for j in range(nfit):
for i in range(np-data):
The outer loop iterates over the polynomial terms, and the inner loop iterates over the data points.
Generating Basis Functions for nfit > 16:
if nfit > 16:
if § ==

fitf[i + j * np_datal

]
—

elif j % 2:
fitf[i + j * np_datal = np.cos((freqq2[i] - f0) * 2.0 * np.pi * (j // 2 + 1) / dfreq)
else:
fitf[i + j * np_datal = np.sin((freqq2[i]l - £f0) * 2.0 * np.pi * (j // 2) / dfreq)

e For j = 0, the basis function is constant:
do(fi) =1

e For odd j, the basis function is a cosine function:

;(f;) = cos (27F(j//2 +D(fi — fo))

Af

e For even j > 0, the basis function is a sine function:

¢;(fi) = sin <27T(j//2A)(ffi - fo))

Generating Basis Functions for nfit < 16:

else:

fitf[i + j * np_datal = np.logl0(freqq2[i] / fcen) *x j
NN
0 (fi) = <10g10 <fﬂ>>

Logarithmic terms are used for fitting when nfit is relatively small (nfit < 16) because they can better capture
variations in data that span several orders of magnitude. This is particularly useful in scenarios like signal
processing where the dynamic range of the data can be very large. The logarithmic terms help in stabilizing the
fitting process by compressing the scale of the data.

For nfit > 16, trigonometric terms (cosine and sine) are used to capture periodic variations in the data.
These basis functions are particularly useful in representing signals that have periodic components.

3.3 Why Logarithmic Terms?
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3.4 Summary

e Logarithmic Basis Functions:

fi VY
o;(fi) = (10g10 (f - )) for nfit < 16

cen

e Trigonometric Basis Functions:

do(fi) =1

65 (fi) = cos (ZUEDUINY forodd j  for nfit > 16

65 (fi) = sin (ZZULRLZI) - for even j > 0

This function effectively generates the appropriate basis functions needed for fitting the data, considering
the characteristics of the data and the desired complexity of the fit.

4 Polynomial Fitting Using Weighted Least Squares and QR Decomposition

The polyfitr function fits a polynomial to the given data using a weighted least squares approach and QR
decomposition to solve the resulting normal equations. Below is a detailed explanation of the function.

4.1 Initialization of Design Matrix

The design matrix X is constructed using the basis functions. This matrix has dimensions n x p, where n is the
number of data points (nfreq) and p is the number of polynomial terms (npoly).

for i in range(nfreq):
for j in range(npoly):
mcalc[i * npoly + j] = fitfun(j, i, nfreq, fitfn)

Mathematically, the design matrix X is:
Xij = ¢;(fi)

where ¢; is the j-th basis function evaluated at the i-th data point f;.

4.2 Construction of Normal Equations

The normal equations are constructed using the design matrix X and the data vector y (which is ddata in the
code). The weighted normal equations are:

XT'TWXa = X"Wy
where W is the diagonal weight matrix with wtt[k] as its diagonal elements.

for i in range(npoly):
re = 0.0
for k in range(nfreq):
if wtt[k] > O:
re += mcalc[i + k * npoly] * ddatalk] * wtt[k]
bbrr[i] = re

for j in range(npoly):
re = 0.0
for k in range(nfreq):
if wtt[k] > O:
re += mcalc[i + k * npoly] * mcalc[j + k * npoly] * wtt[k]
aarr[i * npoly + j] = re

Here: - A = XTWX is stored in aarr. - b = XT"Wy is stored in bbrr.
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4.3 Solving Normal Equations Using QR Decomposition

The normal equations Aa = b are solved using QR decomposition. QR decomposition decomposes A into an
orthogonal matrix Q and an upper triangular matrix R:

A=QR
The normal equations then become:
Ra=Q%b
This system is solved for the coefficient vector a.

grd(aarr, npoly, bbrr)

4.4 Calculation of Fitted Values

The fitted values g; are calculated using the coefficient vector a and the basis functions. This gives us the
polynomial fit.

for i in range(nfreq):
re = 0.0
for j in range(npoly):
re += bbrr[jl * fitfun(j, i, nfreq, fitfn)
dataout[i] = re

Mathematically:
p—1
i =Y a;05(1:)
j=0
4.5 Summary of Key Equations
e Design Matrix:
Xij = ¢;(fi)

Normal Equations:

¢ QR Decomposition:

A =QR
e Solving for Coefficients:
Ra=Q’b
e Fitted Values: -
i = Zaquj(ﬂ)
j=0

4.6 Example

Suppose we have 3 data points (f1,y1), (f2,v2), (f3,y3) and we want to fit a polynomial of degree 2. The basis

functions might be ¢o(f) =1, ¢1(f) = log1o(f/ feen), and ¢2(f) = IOgl()(f/fcen)2~
The design matrix X would be:

1 loglo(fl/fccn) 10g10(f1/fccn)2
X=]1 loglo(fQ/fcen) loglo(fQ/fcen)2
1 loglo(f:s/fcen) IOglo(f?)/fcen)2

The normal equations are then solved to find the coefficients ag, a1, as, which are used to calculate the fitted
values §1, 2, J3-

This function polyfitr encapsulates this process, allowing for efficient polynomial fitting of complex-valued
data.
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5 QR Decomposition Function (qrd)

The qrd function performs QR decomposition to solve the normal equations. Here’s how it works:

1. Initialization: The function starts by converting the input array aarr into a matrix A and the array
bbrr into a vector b:

A = np.array(aarr, dtype=np.float64).reshape((npoly, npoly))

b = np.array(bbrr, dtype=np.float64)

2. QR Decomposition: QR decomposition decomposes matrix A into an orthogonal matrix Q and an

upper triangular matrix R:
A =QR

This is performed using:
Q, R = np.linalg.qr(A)

3. Solving the System: The normal equations Aa = b become:
QRa=b
Multiplying both sides by Q' (transpose of Q):
Ra=Q’b
This system is upper triangular and can be solved using back-substitution:
x = np.linalg.solve(R, Q.T @ b)

4. Updating the Solution Vector: The solution vector x contains the coefficients a of the polynomial.
These coeflicients are then copied back into the bbrr array:

for i in range(len(bbrr)):

bbrr[i] = x[i]

Detailed Steps with Equations

1. Matrix Initialization:
A cRPP becRP

Here, p is the number of polynomial terms (npoly).
2. QR Decomposition: QR decomposition factorizes A as:

A=QR

where:

e Q € RP*? is an orthogonal matrix (QTQ =1I).
e R € RP*P is an upper triangular matrix.

3. Solving the System: The transformed system is:
Ra=Q'b

Solving this involves back-substitution since R is upper triangular.
4. Back-Substitution: For an upper triangular matrix R, solving Ra = ¢ can be done step-by-step starting
from the last equation:

TppQp = Cp

T(p—1)plp T T(p—1)(p—1)A(p—1) = C(p—1)

T1pQp + T1(p-1)A(p—1) T+ T1101 = €1

This allows solving for each a; sequentially.
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Ezample

Suppose A is a 3x3 matrix and b is a 3x1 vector:

2 -1 0 1

A=|-1 2 -1/, b=10

0o -1 2 1

Perform QR decomposition:
A=QR
where Q and R are:

G111 Q12 Q13 11 T12 713
Q=1 g2 @ga3|, R=|[0 1o 1o
431 g32 ¢33 0 0 s

Solve Ra = QTb using back-substitution to find a.
This is the core process behind the qrd function, allowing it to solve for polynomial coefficients efficiently.

6 Conclusion

The presented document outlines the calibration process of Ty, using polynomial fitting and QR decomposition.
The theory and implementation details are crucial for accurate and reliable data analysis in radio astronomy.
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